
LSDN — Manage complex (virtual) networks in cloud environment with Linux
kernel facilities

Vojtech Aschenbrenner*, Roman Kapl, Jan Matejek, Adam Vyskovsky
Faculty of Mathematics and Physics, Charles University

Prague, Czech Republic
*v@asch.cz

Abstract

Contemporary data centers highly rely on SDN (Software De-
fined Networking) to establish and manage networking among
huge number of virtual machines (VM). With a rapid growth
of cloud services and their users there is a natural growth of
virtual machines providing those services. Therefore reliable
SDN solution is a must and all cloud providers depend on it.

There are several open-source solutions providing manage-
ment of virtual networking for example well-known Open
vSwitch. However these solutions depend on running daemons
and they also add code to the kernel. This fact may decrease
reliability.

In this paper we describe a tool called LSDN. With LSDN you
can easily manage (not only) virtual networks and in addition
LSDN brings no other code to the kernel. It relies only on
Linux Kernel facilities and in most cases it does not need any
running services. In this paper we describe how to properly use
LSDN, LSDN internals, its API in C version and DSL (Do-
main Specific Language) version and also bugs we found in
Linux Kernel when using its recent functionality.

Although LSDN is experimentally deployed in non-
demanding production with low traffic it is is still a very
immature project and there is a huge space for improvements
and additional features. We discuss how to tackle some of the
most wanted features, e.g. statefull firewall (now we support
only stateless version).

Keywords

Linux, Traffic Control, Software Defined Networking, Multi
Tenancy, Virtual Network, Cloud, Virtual Machines, Netlink,
Data Center

Introduction

In the last decade we can observe rapid inclination towards
making the whole computation stack virtual, i.e. being able
to create an illusion that we are using real hardware how-
ever the hardware is emulated in software. This phenom-
ena began with full virtualization of computer hardware with
VMWare[12], Oracle VM Virtual Box[11] or QEMU[1] and
evolved into virtualization with lower overhead like contain-
ers, e.g. Docker[2], Linux Containers[5] etc.

Naturally most of these virtual machines have to be net-
worked seemingly in the same way as their physical coun-
terparts. This is why Software Defined Networking (SDN)
generates such a big interest and why there is a huge effort to
fine-tune SDN for the demands of todays cloud environments
which are very diverse. Hence the need for high performance,
reliable and easily customizable solution which will be easy
to integrate (not only) with todays cloud orchestrators and
will have minimal installation dependencies.

One of the well known open-source projects in this field is
Open vSwitch[7] which suits well for both Linux and BSD
environments. It is a high performance, production quality
multi-layer switch very often used with open-source orches-
trators like Kubernetes[3] or Open Stack[6]. Open vSwitch
comes as a kernel module with some code and functionality
duplication of the Linux Kernel, especially the TC infrastruc-
ture. This leads to parallel development of similar function-
ality.

Recent activity in the Linux Kernel Traffic Control (TC) sub-
system and its maturity lead us to the attempt to create a net-
work management software which uses only Linux Kernel
facilities without any additional kernel code.

LSDN Overview

LSDN[4] is a project for complex network setup management
especially suited for cloud environment building on top of
Linux Kernel TC subsystem. So far it provides the following
functionality:

• Support for virtual networks, switches and ports.

• Network overlay.

• Multi tenancy.

• Stateless firewall.

• QoS.

• API for management via C-library.

• DSL for stand-alone management.

LSDN ensures isolation between networks using the existing
network tunneling technologies, e.g. VXLAN[10] or Geneve.



Virtual machines never see traffic from devices that are not
part of their virtual network, even if they exist on the same
host. Multiple virtual machines can even have identical MAC
addresses, as long as they are connected to different virtual
networks. Thus, it is possible to virtualize multiple existing
physical networks and run them without interference in a sin-
gle hosting location.

Intended Usage

LSDN provides a configuration language, that allows you to
describe the desired network configuration (we call it a net-
work model or netmodel for short): the virtual networks,
physical machines and virtual machines and their relation-
ships. It can also be driven programmatically using a C API.

You run LSDN on each physical machine and provide it with
the same netmodel, either by passing the same configuration
file (you can use our dumping mechanism) or calling the same
C API calls. LSDN then takes care of the configuration so
that the VMs in the same virtual network can correctly talk to
each other even if on different computers.

If you run a static ZOO of VMs, you can simply copy over
the configuration file to all the physical machines. If you have
more complex virtualization setup, you are likely to have an
orchestrator on each physical machine. In that case, you can
modify your orchestrator to use LSDN as a backend.

More thorough technical description of the API is described
in the official documentation on the project home page[4].

Example

Let’s use LSDN to configure a simple network: four VMs,
running on two physical machines. We will call the physical
machines A and B and the virtual machines 1, 2, 3 and 4. The
virtual machines 1 and 2 are running on physical machine A,
virtual machines 3 and 4 are located on physical machine B.
The configuration is illustrated in Figure 1.

VM1

VM2

VM3

VM4
Machine A Machine B

Figure 1: Quickstart example.

C API

See Appendix B for an example of a C program using the C
API. Compile it to quickstart binary and run as follows:

$ ./quickstart A # On Machine A
$ ./quickstart B # On Machine B

Configuration File

See Appendix A for an example of a configuration file
config.lsctl passed to a LSDN control program called
lsctl. Run it as follows:

$ lsctl config.lsctl A # On Machine A
$ lsctl config.lsctl B # On Machine B

Network Representation

The public API (either C API or lsctl Configuration Files)
gives you tools to build a model of your virtual networks,
which LSDN will then realize on top of the physical network,
using various tunneling technologies. You will need to tell
LSDN both about the virtual networks and the physical net-
work they will be using.

There are three core concepts (objects) LSDN operates with:
virtual machines, physical machines and virtual networks. In
the rest of the guide (and in the source code) we abbreviate
them as virts, physes and nets. If you are wondering if there
are any physical networks, then no, LSDN just expects that
the physical machines are connected together when needed
and that is all.

The terminology is derived from the most common use case,
but that does not mean that virts really have to be virtual ma-
chines and physes must really be physical machines. For ex-
ample the virts could be Linux containers and physes could
be virtual machines running those containers.

The virts, physes and nets have the following relationships:

• virts always belong to one net (they can not be moved be-
tween nets).

• virts are connected at one of the physes (however, they can
be reconnected at a different phys, in other words, they can
migrate).

• physes attach to a net – this tells LSDN that the phys will
have virts connecting to the network.

Each of these objects can also have attributes – for example
physes can have an IP address (some network tunneling tech-
nologies require this information) and virts can have a MAC
address (network tunnels not supporting MAC learning re-
quire this information).

One of the attributes common to all objects is a name. A name
does not have an impact on the functionality of the network,
but you can use it to keep track of the object. If you are using
lsctl Configuration Files, it is more or less mandatory, because
it is the only way to refer to an object if you want to change it



at a later point (for example when you want to migrate a virt).
If you do not specify a name, one will be generated for you.
This ensures that the export/dump mechanism will always be
able to create cross-references.

Collectively, the model is represented by a LSDN context,
which contains all the physes, virts and nets. Context is a
well known concept in C libraries, which essentially replaces
global variables and ensures that the library can be safely used
by multiple clients in the same process.

Networks

Virtual networks are defined by their virtual network identi-
fier (VID) and the settings for the tunneling technology they
should use. The VID is a numeric identifier used to separate
one virtual network from another and is mapped to VLAN
IDs, VXLAN IDs or similar identifiers. The allowed range
of the VID is defined by the used tunneling technology and
must be unique among all networks of the same type.

The used networking overlay technology (and any options re-
lated to that, like VXLAN port) is encapsulated in the settings
object, which serves as a template for the new networks (with
only the VID changing each time). A list of supported net-
working technologies is in the section Supported Tunneling
Technologies, including the additional options they support.

Like other objects, networks can have a name. However, they
do not have any other attributes, since everything important
for their functioning is part of the settings. Settings can have
names and lsctl reserves name default for unnamed settings.

Virt

virts are the computers/virtual machines that are going to con-
nect to the virtual network. From LSDN’s standpoint, they
are just network interfaces that exist on a phys (usually tap
for a virtual machine or veth for a container). LSDN does not
care what is on the other end.

When creating a virt you have to specify which virtual net-
work it is going to be part of. This can not be changed later.
If you remove the network, all its virts will be removed as
well.

A virt also can not be part of multiple virtual networks. The
recommended solution in that case is to simply create one virt
for each virtual network you are going to connect to. In this
sense virt can be described not as a virtual machine, but as a
network interface of a virtual machine.

Once created, you can specify which phys this virt will con-
nect at and how is its network interface named on that phys.
If you are using lsctl, just run virt with a new -phys argu-
ment. In C API use lsdn_virt_connect(). If the virt
was already connected, it will be reconnected (migrated) to
the new phys (you want to do this in sync with the final stage
of the migration of the virtual machine itself).

Like other objects, virts can have names for your conve-
nience. The names do not have to be unique globally, but
just inside of a single net.

Depending on the networking technology used, you may also
need to inform LSDN about the virtual machine’s MAC ad-
dress (currently only one MAC address can be assigned, this
may change in future versions). LSDN will use this MAC
address for routing network packets to the machine.

Firewall

You can filter out specific packets based on their
source/destination IP address range and source/destination
MAC address range. The filtering can be done independently
on ingress and egress traffic.

The filtering rules are organized by their priority. All rules
inside a given priority must match against the same target (a
target is a masked part of an IP or MAC address – for ex-
ample first octet of the IP address) and must be unique. This
restriction exists to ensure that only deterministic rules can be
defined.

Unfortunately, currently there is no way to ACCEPT packets
early, as is common in e.g. iptables.

QoS

You can limit the amount of traffic going in or out of the virt
for each direction. There are three settings:

• avg_rate provides the basic bandwidth limit

• burst_size allows the traffic to overshoot the limit for
certain number of bytes

• burst_rate (optional) absolute bandwidth limit applied
even if traffic is allowed to overshoot avg_rate

If you do not want to allow any bursting, specify
burst_rate equal to the maximum size of a single packet
(MTU). Setting burst_rate to zero will not work.

Phys

physes are used to describe the underlying physical machines
that will run your virtual machines.

You will tell LSDN which machine it is currently running on
(using claimLocal or lsdn_phys_claim_local()).
LSDN will then make sure that the virts running on this ma-
chine are connected to the rest of the virts running on the
other machines.

If your machine has multiple separate network interfaces (not
bonded), you will want to create a new phys for each network
interface on that machine and claim all such physes as local.
In this sense, a phys is not a physical machine but a network
interface of a physical machine.

This use-case is not meant for a case where both network in-
terfaces are connected to the same physical network and you



just want to choose which one will be used. LSDN does not
support two physes claimed as local connecting to the same
virtual network for technical reasons, so it will not work.

Like other objects, physes can have names. They can also
have an ip attribute, specifying an IP address for the network
overlay technologies that require it.

Validation

The validation step in LSDN serves to validate the network
model. There are several reasons why the validation step is
present in LSDN. One reason is that when a network model
is being gradually built up using the C API the user does not
have to worry too much about the order in which network
objects are being created as long as the final netmodel is valid.
The intermediate steps are not being checked on-the-fly. For
example when creating a virtual machine its MAC attribute
may be specified just before committing the network model
even though for a particular network type this information
may be mandatory (this is specified for each network type in
networking technology).

Another advantage of this approach is that when there are
problems detected during the validation phase they will
all get reported one by one. LSDN conveniently pro-
vides a lsdn_problem_stderr_handler() function
which will report every detected problem on the stan-
dard error output. It is also possible to invoke the
lsdn_validate() step with a different error handler.
This error handler must have the same function signature as
lsdn_problem_stderr_handler().

This way you can try some network scenario and if the val-
idation reports to you some problems it has detected in the
network model you may fix all these issues at once and per-
haps the next network validation phase will succeed.

Every host participating in a network must share a com-
patible network representation. This usually means that
all hosts have the same model, presumably read from a
common configuration file or installed through a single
orchestrator. It is then necessary to claimLocal (or
lsdn_phys_claim_local()) a phys as local, so that
LSDN knows on which machine it is running. Several re-
strictions also apply to the creation of networks in LSDN.

Fixing all the issues present in your network model in the
validation step greatly reduces the risk of creating inconsis-
tent network models in the kernel and it also alleviates the
complexity of the creation of the individual network objects
in the right order inside the kernel.

The validation phase will ensure the network model does not
violate any of the restrictions listed in Network Restrictions.

Commit

Committing a network model means telling LSDN to actually
set-up the network inside Linux kernel.

When we commit a network model the first thing LSDN does
it validates the whole network model. Only if the validation
phase succeeds, the commit phase may proceed. This way the
user does not even need to be aware of the validation phase in-
volved and can only commit the netmodel when appropriate.
This often eliminates the possibility of getting the network in
some undesirable state.

We need to be able to distinguish among network objects al-
ready created and committed in the kernel and network ob-
jects newly created, but not yet committed. LSDN will keep
track of the state of each network object. Basically what we
need to do is to remember which objects are already present
in the kernel in their most up-to-date state and which objects
have been newly created or updated since the last time they
have been committed (if ever) and which objects have been
deleted. Each attribute you add, remove from or change on a
network object is considered as an update of this object.

If you want to know more about LSDN state management and
also to view a diagram of all states and transitions between
these states have a look at the Netmodel Implementation sec-
tion.

It is important to note that any updates exercised on the ker-
nel data structures representing our network objects are only
performed on local objects, where:

• phys is local if and only if it has been
claimed local (either with claimLocal or
lsdn_phys_claim_local()),

• virt is local if and only if it is connected at a local phys.

However, local objects may sometimes need to be updated as
a result of a non local network object being added, updated
or removed. E.g. when a MAC address of a non local virt
changes inside a network where this information is manda-
tory (such as in static VXLAN networks) then local routing
information in the kernel must be updated.

Also, there are transitive dependencies among the network
objects. In particular, when:

• virt is deleted then all its Firewall rules and QoS are deleted
as well,

• net is deleted then all its virts are deleted as well,

• phys is deleted then all virts attached to this phys are
deleted as well,

• settings are deleted then all nets of this type are deleted as
well.

After the initial validation step is completed, LSDN will then
proceed with the actual commit phase which is further subdi-
vided into two subphases:

• decommit and

• recommit.

In the decommit subphase LSDN will consider all the net-
work objects that need to be either updated or deleted and it



will delete both of these objects from the kernel data struc-
tures. However, LSDN will keep track of those objects which
have been initially updated, but not deleted, as they will need
to be committed back again in the next subphase.

The second subphase is the recommit phase in which LSDN
will iterate over all local phys objects and commit any new or
updated virts residing on this phys.

You can perhaps think of the whole commit phase as finding
the smallest possible delta between the objects ready to be
committed and those already committed. In the special case
of committing for the very first time we can imagine we have
only committed an empty network model (which, by the way,
is also possible to do).

Unfortunately, things can go wrong in the commit phase even
when the network model passes the validation phase. De-
pending on the phase at which an error occurred we may or
may not be able to keep the network model consistent.

If an error occurs in the recommit phase, a limited rollback is
performed and the kernel rules remain in mixed state. Some
objects may have been successfully committed, others might
still be in the old state because the commit failed. In such
cases the user can retry the commit to install the remaining
objects.

If an error occurs in the decommit phase, however, there is no
safe way to recover. Given that kernel rules are not installed
atomically and there are usually several rules tied to an ob-
ject, LSDN can’t know what is the installed state after rule
removal fails. In this case the model is considered to be in an
inconsistent state. The only way to proceed is to tear down
the whole model and reconstruct it from scratch.

Error Handling

During construction of the network model there are several
things that can go wrong. LSDN will report these errors to
the user of the C API. All the possible error types are grouped
in lsdn_err_t.

A successful operation will return the LSDNE_OK error code.

When parsing an IP address of a phys or when parsing a
MAC attribute of a virt the operation may fail if the provided
address is invalid. In that case LSDN will report this as a
LSDNE_PARSE error.

When assigning a name to a network object (such as
virt, phys or net) the assignment may fail with the
LSDNE_DUPLICATE error code if an object of the same type
with this name already exists.

A LSDNE_NOIF error code will be returned when
querying the recommended MTU for a virt if the
given virt has no locally assigned interface (see
lsdn_virt_get_recommended_mtu()).

A LSDNE_NETLINK error code is returned when LSDN is
unable to establish a netlink socket for communicating with
the kernel.

LSDNE_VALIDATE is returned when the network model
validation failed. This can happen while validating the net-
work with validate or lsdn_validate(). It can also
happen when committing the network model with commit
or lsdn_commit(), because the network model is always
validated first. In the latter case of committing the network
model, the current network model will stay in effect.

The LSDNE_COMMIT error code means a network model
commit failed and a mix of old, new and dysfunctional ob-
jects are in effect. You may retry the commit and see if the
error was only temporary.

LSDNE_INCONSISTENT is more serious than the
LSDNE_COMMIT failure, since the commit operation
can not be successfully retried. The only operation possible
is to rebuild the whole model again.

You may also encounter a LSDNE_NOMEM error. LSDN
deals with out-of-memory errors in the following fash-
ion: whenever it fails to allocate dynamic memory it
will call a registered callback (if any) that may deal
with this error as it sees fit. The callback is registered
with the lsdn_context_set_nomem_callback()
function. It is possible to set a default handler us-
ing lsdn_context_abort_on_nomem() function pro-
vided by LSDN. This error handler will simply print an error
message on the standard error output and will immediately
abort the program should any dynamic memory allocation
fail. Of course, you may register your own out-of-memory
callback as long as the function signature of the callback is
that of lsdn_context_abort_on_nomem(). You can
also use the callback to implement a setjmp/longjmp error
handling scheme.

If no nomem callback is registered (the default), the
LSDNE_NOMEM error is simply returned to the caller.

Debugging

The LSDN library and the lsctl tool both respect
the LSDN_DEBUG environment variable. If you have
any problem when committing a model, try setting
LSDN_DEBUG=nlerr to print extended netlink messages.
Alternatively, you can try LSDN_DEBUG=all for very ver-
bose output.

LSDN_DEBUG accepts a comma separated list of the follow-
ing message categories:

• netops — High-level network commit operations (add
virt, phys etc.)

• rules — Creation and deletion of TC flower rules.

• nlerr — Errors returned from kernel (mostly netlink).

• all — All of the above



Supported Tunneling Technologies

Currently LSDN supports three network tunneling technolo-
gies: VLAN, VXLAN (in three variants) and Geneve. They
are all configured the same in LSDN (only the settings dif-
fer), but it is important to realize what technology you are
using and what restrictions it has.

Theoretically, you should be able to define your network
model once and then switch the networking technologies
as you wish. But in practice some technologies may need
more detailed network models than others. For example,
ovl_vxlan_mcast does not need to known the MAC ad-
dresses of the virtual machines and ovl_vlan does not need
to know the IP addresses of the physical machines nor the
MAC addresses of the virtual machines.

VLAN

Also known as 802.1Q, VLAN is a Layer-2 tagging technol-
ogy, that extends the Ethernet frame with a 12-bit VLAN tag.
LSDN needs no additional information to setup this type of
network, as it relies on the networking equipment along the
way to route packets (typically using MAC learning).

If either the physical network already uses VLAN tagging
(the physical computers are connected to a VLAN segment)
or the virtual network will be using tagging, then the network-
ing equipment along the way must support this. The support
is called 802.1ad or sometimes QinQ.

Restrictions are in 12-bit VID, need of having physical nodes
on the same L2 segment and you have to take care when doing
a nesting into another VLAN.

VXLAN

VXLAN is a Layer-3 UDP-based tunneling protocol. It is
available in three variants in LSDN, depending on the routing
method used. All of the variants need the connected partici-
pating physical machines to have the IP attribute set and they
must all see each other on the IP network directly (no NAT).

VXLAN tags have 24 bits (16 million networks). VXLANs
by default use UDP port 4789, but this is configurable and
could in theory be used to expand the vid space. LSDN cur-
rently does not do this.

VXLANs support IPv6 addresses, but they can not be mixed
with IPv4. All physical nodes must use the same IP version
and the version of multicast address for Multicast VXLAN
must be the same. This does not prevent you from using both
IPv6 and IPv4 on the same physical node for other purposes
than LSDN, you just have to choose one version for the phys
IP attribute.

Multicast This is a self configuring variant of VXLANs.
No further information for any machine needs to be provided,

because the VXLAN routes all unknown and broadcast pack-
ets to a designated multicast IP address and the VXLAN iter-
atively learns the source IP addresses. Hence the only addi-
tional information is the multicast group IP address.

End-to-End Partially self-configuring variant of VXLANs.
LSDN must be informed about the IP address of each physical
machine participating in the network using the IP attribute.
All unknown and broadcast packets are sent to all the physical
machines and the VXLAN iteratively learns the IP address -
MAC address mapping.

Fully Static VXLAN with fully static packet routing.
LSDN must be informed about the IP address of each phys-
ical machine and the MAC address of each virtual machine
participating in the network. LSDN then constructs a routing
table from this information. Broadcast packets are duplicated
and sent to all machines.

Geneve

Geneve is a Layer-3 UDP-based tunneling protocol. All par-
ticipating physical machines must see each other on the IP
network directly (no NAT).

Geneve uses fully static routing. LSDN must be informed
about the IP address of each physical machine (using IP at-
tribute) and MAC address of each virtual machine participat-
ing in the network.

No Tunneling

No separation between the networks. You can use this type
of network for corner cases, like connecting a VM serving as
an internet gateway to a dedicated interface. In this case no
separation is needed nor desired.

Network Restrictions

Certain restrictions apply to the set of possible networks and
their configurations that can be created using LSDN. Any-
where where the keyword mandatory is written in the follow-
ing list with regards to a network type, please refer to Sup-
ported tunneling technologies to see if the rule applies to a
given network type:

• You can not assign the same MAC address to two different
virts that are part of the same net.

• Any two nets of the same network type must not be as-
signed the same virtual network identifier.

• Any two VXLAN networks sharing the same phys, where
one network is of type Fully static and the other is either of
type Endpoint-to-Endpoint or Multicast, must use different
UDP ports.

• A virt must be explicitly assigned a MAC address when
this is mandatory for a given network type.



• IP address has been specified for a phys if it hosts a net
where this information is mandatory.

• No duplicate IP addresses were specified for any two phy-
ses.

• All phys attached to the same net have the same IP versions
of their IP addresses.

• While trying to connect a virt to a net on phys, the phys is
attached to net.

• Interface specified for virt exists.

• No duplicate MAC addresses were specified for any two
virts connected to the same net if this attribute is mandatory
for a given network type.

• Any two nets created on the same phys have compatible
network types.

• The virtual network identifier is within the allowed range
for a given network type where this is mandatory.

• No two nets of the same network type have the same virtual
network identifier.

• No two rules on the same virt sharing the same priority
have different match targets or masks.

• Two rules on the same virt sharing the same priority are not
equal.

• QoS rates specified for a virt are within the allowed range
(rate).

Netmodel Implementation

The network model (in lsdn.c) provides functions that are not
specific to any network type. This includes QoS, firewall
rules and basic validation.

Importantly, it also provides the state management needed for
implementing the commit functionality, which is important
for the overall ease-of-use of the C API. The network model
layer must keep track of both the current state of the network
model and what is committed. Also it tracks which objects
have changed attributes and need to be updated. Finally, it
keeps track of objects that were deleted by the user, but are
still committed.

For this, it is important to understand a life-cycle of an object,
illustrated in Figure 2.

The objects always start in the NEW state, indicating that they
will be actually created with the nearest commit. If they are
freed, the free call is done immediately. Any update leaves
them in the NEW state, since there is nothing to update yet.

Once a NEW object is successfully committed, it moves to
the OK state. A commit has no effect on an OK object, since
it is up-to-date.

If a OK object is freed, it is moved to the DELETE state, but
its memory is retained until commit is called and the object
is deleted from kernel. The objects in DELETE state can not

NEW updatec. error

OK

commit

free

free

FAIL

c. fail

RENEW

c. error

update

DELETE

free

commit

c. fail

commit c. fail c. error

update

free

commit

free

updatec. fail

Figure 2: Object life-cycle.

be updated, since they are no longer visible and should not be
used by the user of the API. Also, they can not be found by
their name.

If an OK object is updated, it is moved to the RENEW state.
This means that on the next update, it is removed from the
kernel, moved to NEW state, and in the same commit added
back to the kernel and moved once again to the OK state.
Updating the RENEW object again does nothing and freeing
it moves it to the DELETE state, since that takes precedence.

If a commit for some reason fails, LSDN tries to unroll all op-
erations for that object and returns the object to a temporary
ERR state. After the commit has ended, it moves all objects
from ERR state to the NEW state. This means that on the next
commit, the operations will be retried again, unless the user
decides to delete the object.

If even the unrolling fails, the object is moved to the FAIL
state. The only possibility for the user is to release its mem-
ory. If the object was originally already deleted, it bypasses
the FAIL state.

If validation fails, commit is not performed at all and object
states do not change at all.

How does it translate to TC?

The supported network overlays can be divided into roughly
three types:

• Static forwarding based on pre-configured MAC addresses.

• Learning forwarding using a standard Linux bridge.



• Learning forwarding using the native ability of the network
tunnel (e.g. Linux VXLANs, VLANs).

Static forwarding

Static forwarding is handled entirely by TC rules that forward
the packets to appropriate interfaces and set appropriate tun-
nel meta-data. These rules are attached to the VM (virt) inter-
faces provided by the user and to the tunnel interface created
by LSDN. To avoid blow-up of the number of rules, we use a
dummy interface hold most of the forwarding rules.

When a packet enters the system from the virt side, it is first
classified as broadcast, multicast or unicast. Broadcast and
multicast packets are mirrored (using the mirred action) to
all interface except the originating virt. They are mirrored
multiple times to the tunnel interface, but each time with dif-
ferent tunnel meta-data. Unicast packets are redirected to the
dummy interface, which sends them to the appropriate virt or
tunnel depending on the destination MAC address.

When a packet enters the system from the tunnel side, it is
classified based on the virtual network identifier and desti-
nation MAC address. Unicast packets are redirected to the
dummy interface (same as for the virts) and broadcast pack-
ets are mirrored to all local virts.

Learning forwarding

Learning forwarding is handled using a standard Linux bridge
and a set of dummy interfaces, each representing one remote
physical machine. The dummy interfaces are responsible for
setting the correct tunnel meta-data for the outgoing packets.
Packets entering from the tunnel side are redirected based on
the virtual network identifier and IP address of the remote
phys to the correct dummy interface.

The setup described so far has the problem that the virtual
ethernet network we have created contains cycles — in par-
ticular, the physes form a complete graph, since they are all
connected with each other. To rectify this, we add special
TC rules on the dummy interfaces that block re-broadcasting
of packets coming through the tunnel back to other physical
machines.

Tunnels that support forwarding natively

Some tunnel technologies are able to forward packets to the
correct recipient themselves. This includes VLANs, where
the forwarding behavior is provided by the underlying Eth-
ernet network. Another case is VXLAN with either multi-
cast support or with explicitly pre-filled forwarding database
(fdb), where the Linux VXLAN driver provides the forward-
ing behavior.

We have decided to use the native ability of VXLAN, since it
is already there. But the same behaviour could be replicated
in the non-multicast VXLAN by using Linux bridge.

TC Abilities

We have to conclude that TC is steadily gaining in expres-
siveness. One of the recent additions, which was helpful, was
support for goto chains [8]. This allows users to efficiently
implement processing DAGs (Direct Acyclic Graphs). The
expressiveness was already pointed out by [9], but at that time
it had to be either implemented in non-efficient manner (lin-
ear matching) or entirely in the u32 filter, which supported
nested hash-tables.

Still, we feel that some of the rules we generate could be more
efficient or redundant with some changes to the TC infrastruc-
ture. Naturally the question remains how to do that simply
and generically. Please take the following paragraphs more
as a basis for discussion.

For example, we use the dummy interface to share the for-
warding rules. But using interface feels quiet heavyweight.
Recently a support for sharing the set of filter chains between
interfaces was added. This feature is not currently usable for
our purpose, since our broadcast processing is different de-
pending on the ingress device and only after that we use the
shared rules. Maybe the starting chain could be different for
each device sharing the set of chains? Since the feature was
introduced (as far as we know), to better match the capabili-
ties of the hardware, it must be considered if this model still
matches the capabilities of the hardware.

But maybe there is no reason to have different broadcast ac-
tions for each interface? The semantics of TC mirred action
could be extended (or a new action introduced) so that mirred
mirrors the packet only if the original ingress interface of the
packet is not the same as the interface we are mirroring to.
Alternatively, to make this scheme more extensible, the mir-
roring condition could be based not on ingress interface, but
on skbmark set by the user. We would like to hear how pro-
grammable switches and network card expose the broadcast
capability to the user.

Technically, this set-up could be implemented today, using
filters, but in quite cumbersome way. Existing filter only
provide “if something then action” behavior, but we need “if
something not then action” behavior. The negation has to be
emulated using the “goto chain” capability.

The last major comment is related to the integration of Linux
bridge with TC. Since all the forwarding done by the Linux
bridge is based on Linux interfaces, we were forced to create
dummy interfaces for each remote physical machine, even if
the packet goes through the same tunnel in the end.

Maybe the bridge could be modified to recognize multi-
ple forwarding destinations (bridge ports) going through one
Linux interface. The destinations could be identified using
skbmark, or directly using tunnel meta-data. In the long
run, this could make the forwarding code present in VXLAN
driver (which is similar to the bridge code) obsolete and could
be reused for other types of tunnels.



Bugs in Linux Kernel

During the development of LSDN several bugs in the kernel
were found. Here is the list with the first 7 digits of the com-
mit corresponding to the provided patch and short descrip-
tion.

• f15ca72 (not fixed, just reported), some dst_ops do not
set update_pmtu, patched by conditional call.

• a60b3f5, bad RCU implementation on blocks with goto
chain action.

• d7aa04a, use after free when deleting filter chain.

• 5ae437a, report if filter is too large to dump.

Conclusion and Future Work

In this paper we described the motivation behind LSDN. It
was mainly the fact, that TC subsystem in Linux Kernel is
powerful enough to build a tool on top of it without any ad-
ditional kernel code and providing enough features for man-
agement of complex networking setups.

We summarized the main requirements which are needed for
tool of this kind and described it’s design. We have written
it in C and designed our own domain specific language for
configuration file style of running the application in addition
to the usage of the C library liblsdn via the C API.

Next we described the network model and all the internals of
LSDN. We have shown some examples how to run LSDN and
presented its features showing the suitability for deploying it
in a cloud environment. Furthermore we mentioned various
kernel bugs we fixed or reported.

LSDN is in a very early stage and there are a lot of plans
for future development. For example we would like to sta-
bilize its API and try to spread the word and convince the
community that it is an elegant way how to configure com-
plex network setups. Furthermore there are some features
that we consider useful and could be improved upon straight
away. Some of them rely on things that the kernel learned to
do in the last months of the project, or that we have discov-
ered recently - the egress qdisc or better default disciplines
(CoDEL was suggested). We would also like to improve the
firewall (rewrite the rule engine and add support for ACCEPT
actions).

References
[1] Bellard, F. 2005. Qemu, a fast and portable dynamic

translator. In Proceedings of the annual conference on
USENIX Annual Technical Conference, 41–41. USENIX
Association.

[2] Docker Home Page. https://www.docker.com/.
Accessed: 2018-06-25.

[3] Kubernetes Home Page. https://kubernetes.
io/. Accessed: 2018-06-25.

[4] LSDN Github Project Page. http://www.github.
com/asch/lsdn. Accessed: 2018-06-25.

[5] Linux Containers Home Page. https:
//linuxcontainers.org/. Accessed: 2018-
06-25.

[6] Kubernetes Home Page. https://www.
openstack.org/. Accessed: 2018-06-25.

[7] Open vSwitch Home Page. https://www.
openvswitch.org/. Accessed: 2018-06-25.

[8] net: sched: introduce multichain support for filters.
https://www.mail-archive.com/netdev@
vger.kernel.org/msg168662.html. Accessed:
2018-06-25.

[9] Salim, J. H. 2015. Linux traffic control classifier-action
subsystem architecture.

[10] Sridhar, T.; Kreeger, L.; Wright, C.; Dutt, D. G.;
Bursell, M.; Mahalingam, M.; Agarwal, P.; and Duda,
K. 2014. Virtual extensible local area network (vxlan):
A framework for overlaying virtualized layer 2 networks
over layer 3 networks.

[11] Oracle VM VirtualBox Home Page. https://www.
virtualbox.org/. Accessed: 2018-06-25.

[12] VMWare Home Page. https://www.vmware.
com/. Accessed: 2018-06-25.

Appendix A
# Boilerplate

namespace import lsdn::*
# Choose the network tunneling technology

settings geneve

# Define the two virtual networks we have mentioned

net 1

net 2

# Describe the network

phys -name A -if eth0 -ip "192.168.10.1" {

attach 1 2

virt -name 1 -if tap0 -mac "14:9b:dd:6b:81:71" -net 1

virt -name 2 -if tap1 -mac "92:89:90:93:61:75" -net 2

}

phys -name B -if eth0 -ip "192.168.10.2" {

attach 1 2

virt -name 3 -if tap0 -mac "42:94:a5:f9:69:c6" -net 1

virt -name 4 -if tap1 -mac "f2:9b:4f:48:2d:d1" -net 2

}

# Tell LSDN what machine we are configuring right now

# (first commandline argument must contain the phys. machine name)

claimLocal [lindex $argv 0]

# Activate everything

commit

Appendix B
#include <assert.h>

https://www.docker.com/
https://kubernetes.io/
https://kubernetes.io/
http://www.github.com/asch/lsdn
http://www.github.com/asch/lsdn
https://linuxcontainers.org/
https://linuxcontainers.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openvswitch.org/
https://www.openvswitch.org/
https://www.mail-archive.com/netdev@vger.kernel.org/msg168662.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg168662.html
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.vmware.com/
https://www.vmware.com/


#include <stdlib.h>

#include <string.h>

#include <stdint.h>

#include <lsdn/lsdn.h>

/* Use the default GENEVE port */

static uint16_t geneve_port = 6081;

static struct lsdn_context *ctx;

static struct lsdn_settings *settings;

static struct lsdn_net *net1, *net2;

static struct lsdn_phys *machine1, *machine2;

static struct lsdn_virt *VM1, *VM2, *VM3, *VM4;

int main(int argc, const char* argv[])

{

/* On the command line pass in the machine name on which the

* program is being run. In our case the names will be either

* A or B. */

assert(argc == 2);

/* Create a new LSDN context */

ctx = lsdn_context_new("quickstart");

lsdn_context_abort_on_nomem(ctx);

/* Create new GENEVE network settings */

settings = lsdn_settings_new_geneve(ctx, geneve_port);

/* Create Machine 1 */

machine1 = lsdn_phys_new(ctx);

lsdn_phys_set_ip(machine1, LSDN_MK_IPV4(192, 168, 10, 1));

lsdn_phys_set_iface(machine1, "eth0");

lsdn_phys_set_name(machine1, "A");

/* Create Machine 2 */

machine2 = lsdn_phys_new(ctx);

lsdn_phys_set_ip(machine2, LSDN_MK_IPV4(192, 168, 10, 2));

lsdn_phys_set_iface(machine2, "eth0");

lsdn_phys_set_name(machine2, "B");

/* Create net1 */

net1 = lsdn_net_new(settings, 1);

/* Attach net1 */

lsdn_phys_attach(machine1, net1);

lsdn_phys_attach(machine2, net1);

/* Create net2 */

net2 = lsdn_net_new(settings, 2);

/* Attach net2 */

lsdn_phys_attach(machine1, net2);

lsdn_phys_attach(machine2, net2);

/* Create VM1 */

VM1 = lsdn_virt_new(net1);

lsdn_virt_connect(VM1, machine1, "tap0");

lsdn_virt_set_mac(VM1, LSDN_MK_MAC(0x14,0x9b,0xdd,0x6b,0x81,0x71));

lsdn_virt_set_name(VM1, "1");

/* Create VM2 */

VM2 = lsdn_virt_new(net2);

lsdn_virt_connect(VM2, machine1, "tap1");

lsdn_virt_set_mac(VM2, LSDN_MK_MAC(0x92,0x89,0x90,0x93,0x61,0x75));

lsdn_virt_set_name(VM2, "2");

/* Create VM3 */

VM3 = lsdn_virt_new(net1);

lsdn_virt_connect(VM3, machine2, "tap0");

lsdn_virt_set_mac(VM3, LSDN_MK_MAC(0x42,0x94,0xa5,0xf9,0x69,0xc6));

lsdn_virt_set_name(VM3, "3");

/* Create VM4 */

VM4 = lsdn_virt_new(net2);

lsdn_virt_connect(VM4, machine2, "tap1");

lsdn_virt_set_mac(VM4, LSDN_MK_MAC(0xf2,0x9b,0x4f,0x48,0x2d,0xd1));

lsdn_virt_set_name(VM4, "4");

/* Claim local A or B */

struct lsdn_phys *local = lsdn_phys_by_name(ctx, argv[1]);

assert(local != NULL);

lsdn_phys_claim_local(local);

/* Commit the created netmodel */

lsdn_commit(ctx, lsdn_problem_stderr_handler, NULL);

lsdn_context_free(ctx);

return 0;

}


	Keywords
	Introduction
	LSDN Overview
	Intended Usage

	Example
	C API
	Configuration File

	Network Representation
	Networks
	Virt
	Firewall
	QoS
	Phys
	Validation
	Commit
	Error Handling
	Debugging

	Supported Tunneling Technologies
	VLAN
	VXLAN
	Geneve
	No Tunneling

	Network Restrictions
	Netmodel Implementation
	How does it translate to TC?
	Static forwarding
	Learning forwarding
	Tunnels that support forwarding natively

	TC Abilities
	Bugs in Linux Kernel
	Conclusion and Future Work
	Appendix A
	Appendix B

