
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Vojtěch Aschenbrenner

Deep Relational Learning with
Predicate Invention

Master Thesis

Prague, Jan, 2013

Study Programme: Open Informatics
Branch of Study: Artificial Intelligence

Advisor: Ing. Ondřej Kuželka

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [20]

A C K N O W L E D G M E N T S

I would like to thank my advisor Ondřej Kuželka for his invaluable advice and
his role of faultless advisor. Also, I would like to thank the computer in Intelligent
Data Analysis group named Otrok. My computations were one of the latests before
he went to the silicon heaven. Finally, I am really beholden to all creators of good
open-source software, especially vim, eclim, latex and git.

iv

D E C L A R AT I O N

I declare, that I have created this thesis on my own and I have also quoted every
used information source. This has been done according to the methodical directive
about keeping ethical principles during preparation of final projects at university.

Prague, January 3, 2013

Vojtěch Aschenbrenner

P R O H L Á Š E N Í

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veš-
keré použité informační zdroje v souladu s Metodickým pokynem o dodržování
etických principů při přípravě vysokoškolských závěrečných prací.

Praha, 3. ledna 2013

Vojtěch Aschenbrenner

v

A B S T R A C T

This thesis deals with a design of novel classification model from the field of re-
lational machine learning, which uses a structure inspired by artificial neural net-
works for representation of logic program. The logic program syntax is a subset
of Datalog but extended with disjunctions with weight coefficients. The weights
are used for learning the model with modified backpropagation method known
from artificial neural networks. Then the work presents experimental implemen-
tation of the proposed model and validates its accuracy. The accuracy is close to
the best algorithms from the literature. Moreover, the presented system can be
further extended in various directions. So far, it implements disjunction weights
learning but not structure learning, which could potentially boost its performance
significantly. This remains a challenge for future work.

A B S T R A K T

Tato práce se zabývá návrhem nového klasifikačního modelu z oblasti relačního
strojového učení, který pro reprezentaci logického programu využívá strukturu
inspirovanou umělými neuronovými sítěmi. Syntax logického programu je pod-
množinou Datalogu, avšak rozšířenou o váhový koeficient u pravidel disjunkce.
Právě tyto váhy jsou využity pro učení modelu pomocí upravené metody backpro-
pagation. Dále práce poskytuje experimentální implementaci navrženého modelu
a ověřuje jeho přesnost klasifikace. Ta se velmi blíží nejlepším algoritmům z lite-
ratury. Navíc tento systém může být dále rozšiřován. Dosud totiž implementuje
pouze učení vah disjunkcí, ale už ne učení struktury. Právě učení struktury může
velmi znatelně zlepšit přesnost klasifikace a bude tak cílem budoucí práce.

vi

K E Y W O R D S

Relational Learning, Inductive Logic Programming, Constraint Satisfaction Prob-
lem, Theta-Subsumption, Predicate Invention, Datalog Queries, Artificial Neural
Networks

K L Í Č O VÁ S LO VA

Relační učení, Induktivní logické programování, Problémy s omezujícími podmín-
kami, Theta subsumpce, Vytváření predikátů, Datalog dotazy, Umělé neuronové
sítě

vii

C I T E A S

Vojtěch Aschenbrenner, Deep Relational Learning with Predicate Invention, Master
Thesis, Prague, CZ, Czech Technical University in Prague, 2013, p. 80.

BIBTEX:

@MASTERSTHESIS{

author = {Vojtěch Aschenbrenner},

title = {Deep Relational Learning

with Predicate Invention},

pages = {80}

school = {Czech Technical University in Prague},

year = {2013},

language = {English},

location = {Prague, CZ}

}

c©Vojtěch Aschenbrenner, 2013.

viii

C O N T E N T S

1 thesis overview 1

1.1 Introduction . 1

1.2 Aims and Objectives . 3

1.3 Thesis Organization . 3

2 theoretical foundations 5

2.1 Inductive Logic Programming . 5

2.1.1 Terminology . 5

2.1.2 θ-subsumption . 7

2.1.3 Inductive Logic Programming 8

2.2 Constraint Satisfaction Problem and Combinatorial Optimization . . 11

2.2.1 Introduction . 11

2.2.2 Binarization of Constraints . 12

2.2.3 Consistency Techniques . 12

2.2.4 Forward Checking . 13

2.2.5 Variable Ordering . 15

2.2.6 Branch and Bound . 16

2.2.7 Restarted Strategy . 18

2.3 Artificial Neural Networks . 18

2.3.1 Feed-forward Architecture . 18

2.3.2 Learning of Artificial Neural Network 19

2.4 Fuzzy Logic . 21

2.4.1 Łukasiewicz Logic . 22

3 state of the art in related areas 23

3.1 Datalog . 23

3.1.1 Existing Datalog Solvers . 23

3.1.2 Suitability for Algorithm . 24

3.2 θ-subsumption Engines . 25

3.2.1 Resumer2 . 26

4 proposed model 27

4.1 λκ-program . 28

4.2 λκ-template . 29

4.3 λκ-network . 31

4.4 Two Examples . 34

4.4.1 First Example . 34

ix

contents x

4.4.2 Second Example . 38

4.5 Learning . 41

4.5.1 Finding Maximal Substitution 41

4.5.2 Gradient Descent . 42

4.6 Classification Network . 44

4.6.1 Multi-criteria Classification . 44

5 proposed algorithm 47

5.1 Learning Phase . 47

5.1.1 Threshold Learning . 49

5.2 Classification Phase . 49

5.3 Effective Implementation Details . 51

5.3.1 Biggest Bottleneck . 51

5.3.2 Basic Approach for Solving λκ-template→ λκ-network. . . . 51

5.3.3 Sample Representation . 52

5.3.4 Variable Ordering . 53

5.3.5 Forward Checking . 53

5.3.6 Branch and Bound . 54

5.3.7 Caching . 55

6 experiments 56

6.1 λκ-programs . 56

6.2 Learning Analysis . 59

6.3 Results . 59

7 conclusion and future work 61

7.1 Conclusion . 61

7.2 Future Work . 62

bibliography 63

a content of cd 67

L I S T O F F I G U R E S

Figure 2.1 Completeness and Consistency of Hypothesis 10

Figure 2.2 Four Queens Problem State-space 14

Figure 2.3 Branch and Bound Example 17

Figure 2.4 Simplified Model of Neuron 19

Figure 2.5 Feed-forward Artificial Neural Network 20

Figure 2.6 Temperature Example in Fuzzy Logic 22

Figure 4.1 Proposed n-layered λκ-template 31

Figure 4.2 Node . 34

Figure 4.3 Maximal Substitution Example 35

Figure 4.4 5-layered λκ-template for the Most Blue Path Problem 37

Figure 4.5 5-layered λκ-network for the Most Blue Path Problem 37

Figure 4.6 5-layered λκ-template for More Complex Example 40

Figure 4.7 5-layered λκ-network for More Complex Example 40

Figure 4.8 Threshold Finding . 45

Figure 4.9 Multi-criteria Classification Model 45

Figure 5.1 Learning Schema . 48

Figure 5.2 Classification Schema . 50

Figure 6.1 Dispersion . 59

Figure 6.2 Learning Error . 59

Figure 6.3 PTC-MR Accuracy . 60

Figure 6.4 Mutagenesis Accuracy . 60

L I S T O F TA B L E S

Table 2.1 Examples for Basic Definitions from Logic 7

Table 2.2 Inductive Logic Programming Example 10

Table 2.3 Backpack Problem Specification 17

Table 3.1 Performance Comparison of θ-subsumers 25

Table 5.1 Literal Partition . 53

Table 6.1 Parameters of Algorithm . 60

xi

Table 6.2 Accuracies . 60

L I S T I N G S

Listing 2.1 Node Consistency Algorithm 12

Listing 2.2 Arc Revision Algorithm . 13

Listing 2.3 Arc Consistency Algorithm AC3 13

Listing 2.4 Forward Checking . 14

Listing 2.5 On-line Backpropagation Learning 21

Listing 4.1 Datalog Program . 29

Listing 4.2 3-layered λκ-program . 29

Listing 4.3 Maximal Substitution . 33

Listing 4.4 λκ-program for the Most Blue Path Problem 36

Listing 4.5 More Complex λκ-program 39

Listing 4.6 Learning Algorithm . 41

Listing 5.1 Caching Results . 55

Listing 6.1 PTC-MR Bottom Layers . 57

Listing 6.2 Common Upper Layers . 57

Listing 6.3 Mutagenesis Bottom Layers 58

A C R O N Y M S

ILP Inductive Logic Programming

CSP Constraint Satisfaction Problem

ANN Artificial Neural Network

BB Branch and Bound

RPROP Resilient Backpropagation

AI Artificial Intelligence

SRL Statistical Relational Learning

xii

acronyms xiii

API Application Interface

1 T H E S I S O V E R V I E W

1.1 introduction

The ultimate goal of Artificial Intelligence (AI) is to create computational agents,
that would behave intelligently. In this context, the word intelligently means, that
the behaviour of these agents should lead to maximizing the chance to succeed.
Therefore, it is important for the agents to be able to capture the main specifics
of the environments, in which they operate in their mental models in order to be
able to reason the environments and the effects of their actions. Models of most
non-trivial real-life environments are usually characterised by having both a rich
complex structure and having a significant uncertainty component (probabilistic
or other). (Poole and Mackworth [36])

In the past, two large and separated paradigms emerged: logical (a.k.a. symbolic)
and statistical AI. These two paradigms have started to converge only recently, giv-
ing rise to a field known as statistical relational AI, whose most rapidly developing
subfield is Statistical Relational Learning (SRL).

The logical AI uses logic (often predicate logic, but also more complex logics) as
a tool for representation and reasoning the real world. This approach is suitable
for capturing the complexity of the world, because it is able to naturally describe
relations among objects. It is often called relational AI because of these relations.
Many approaches arose in this type of AI, e. g., logical programming, description
logics, classical planning, symbolical parsing, rule induction etc. (Poole [35]) These
methods are widely used in computational biology, natural language processing,
business intelligence etc. The disadvantage of this approach is that it cannot affect
the uncertainty in a natural way.

Statistical AI is the paradigm where the probability theory is used for describing
and reasoning the environment. Probability can naturally express the uncertainty
of the world with the random variables, where each random variable expresses
some phenomenon with non-negative probability. (Talbott [46]) Into this group, we
can place approaches such as Bayes Networks, Hidden Markov Models, Artificial
Neural Network (ANN), Markov Decision Process, Gaussian Mixture Model etc.
Their main usage is in the fields, where uncertainty plays the main role, e. g., robot

1

1.1 introduction 2

controlling, finance prediction, medical diagnosis, decision making maximizing
expected utility, adaptive testing etc.

As we have already mentioned, the world is complex as well as uncertain. There-
fore, many researchers asked whether the combination of the two approaches
can be convenient. As a result, a new field combining statistical and logical AI,
called statistical relational AI, emerged. Many new approaches originated in this
new field through the so-far short course of its existence. A prominent example
is Markov Logic, widely used for link prediction, entity resolution, information
extraction etc. (Domingos et al. [9]) Markov Logic extends predicate logic with
weights for logical clauses. This logic is then used as a template for Markov net-
work with weights which can be learnt by various techniques. Also learning the
structure of Markov network is possible. Other approaches to SRL are, for exam-
ple, knowledge-based model construction (Wellman et al. [48], Ngo and Haddawy
[32], Kersting and De Raedt [18]), stochastic logic programs (Muggleton et al. [30],
Cussens [7]), probabilistic relational models (Getoor et al. [12]), relational Markov
models (Anderson et al. [1]), relational Markov networks (Taskar et al. [47]), re-
lational dependency networks (Neville and Jensen [31]) and structural logistic re-
gression (Popescul and Ungar [37]).

Inductive Logic Programming (ILP) is a research area at the intersection of machine
learning and logic programming. It aims at finding a hypothesis represented by
a logic and the logic is also used for representation of examples and background
knowledge. In the beginnings, basic ILP techniques established. These techniques
were crisp which means that the probability theory was not used in them. Tech-
niques searched hypothesis space in top-down (specialization) or bottom-up (gen-
eralization) manner. (Lavrac and Dzeroski [26]) Later, an approach called propo-
sitionalization appeared. Propositionalization is a method for transformation rela-
tional learning problem to an attribute-value problem. This transformed problem
can be than solved by propositional learners and translated back to relational form.
An example introducing probability to ILP is a combination of propositionalization
with linear classificator, where constructed features are crisp but are weighted
by linear classificator. (Paes et al. [33]) Our approach goes further in including
fuzziness to ILP. The system is able to learn helpful non-crisp concepts (predicate
invention), which can be used for definition of other concepts or final hypothesis.
This is a crucial ability that is not offered by most ILP systems. We use methods
from ANN for learning the model because of its structure similarity.

1.2 aims and objectives 3

1.2 aims and objectives

The main aim of this work is to develop a novel algorithm for the field of ILP
that, first, would be able to learn definitions of relational concepts and use these
in the learning process and, second, that would be able to deal with uncertainty.
The novel algorithm presented in this thesis is based on transforming modified
Datalog program into network structure, which can be learnt by methods known
from ANN. The main objectives are:

• Design a language similar to Datalog viable for transforming program writ-
ten in that language into structural representation.

• Design and implement an effective reasoner for the proposed language. This
means to create a reasoner, which contains an implementation of various
optimization techniques e. g., forward checking, variable ordering or Branch
and Bound (BB).

• Implement a learning algorithm inspired by ANN for the structures represent-
ing programs in proposed language.

• Create a classification algorithm using the developed reasoner and learning
algorithm.

• Experimentally check accuracy of the given approach and discuss future ex-
tensions.

1.3 thesis organization

This thesis is divided into chapters as follows.

1. thesis overview The first chapter provides an introduction to the work, its
aims and organization.

2. theoretical foundations The second chapter reviews theoretical founda-
tions from different fields of computer science and mathematics needed for design
and effective implementation of our algorithm. It explains concepts from ILP,
Constraint Satisfaction Problem (CSP), ANN and Fuzzy Logic.

3. state of the art in related areas The third chapter describes the state
of the art in the fields related to our proposed model e. g., tools for answering

1.3 thesis organization 4

Datalog queries and engines for θ-subsumption. A section covering a state-of-the-
art θ-subsumption algorithm in detail is provided in order to explain motivation
behind our own θ-subsumption solver.

4. proposed model One of the main chapters of this work is the fourth chapter.
It describes several theoretical concepts from proposed model. This description is
extended with two examples showing the function of the model. Finally, a learning
algorithm is derived and it is shown how to perform classification with the learnt
models.

5. proposed algorithm The fifth chapter is about the implementation of the
proposed model. It starts with defining concrete design of learning and classifica-
tion phases of the algorithm and then it proposes an effective implementation.

6. experiments Next chapter contains experiments on publicly available data
for SRL and a comparison with the best algorithms.

7. conclusion and future work The last chapter provides conclusion and
summarization of this thesis. Finally we propose various extensions and our future
work.

2 T H E O R E T I C A L F O U N DAT I O N S

This chapter provides necessary theoretical foundations for understanding our
learning model and algorithms. It contains three theoretical parts, each from dif-
ferent part of computer science.

The first part of the preliminaries is generally about ILP. This part is described
more widely than needed for this work, but as this work belongs to the ILP category
it seems like a reasonable choice.

The second part is from the field of combinatorial optimization, specifically from
CSP. Techniques from CSP will be very useful in speeding up problems related to
ILP e. g., finding θ-subsumption.

Next part is dedicated to ANN. The structure of ANN is an inspiration for our model
and also for its future extension. We use algorithms similar to forward propaga-
tion for determining the value of the network or backpropagation for learning the
network in a slightly modified form, which is suitable for the relational learning
model, that we solve. In ANN, we can find inspiration for our future work because
of its structure similarity. In the future, we can try advanced approaches from ANN
on our model.

Also inspiration from fuzzy logic is used in one part of our model, thus a short note
on this non-classical logic is a part of this section. We use only basic principles of
fuzzy logic, concretely of the Łukasiewicz logic, thus this part will be elementary.

2.1 inductive logic programming

2.1.1 Terminology

In this subsection, we will mention fundamental definitions from logic and deduc-
tive databases. The knowledge of these definitions is required for understanding
next sections, mainly the chapter about the proposed model (Chapter 4).

Definition 2.1.1 (Atom).
An atom is a predicate symbol immediately followed by a bracketted tuple of
terms.

5

2.1 inductive logic programming 6

Definition 2.1.2 (Literal).
A literal is an atom (positive literal) or a negated atom (negative literal).

Definition 2.1.3 (Clause).
A clause is a formula of the form

∀X1,∀X2, . . . ,∀Xs(L1 ∨ L2 ∨ . . .∨ Lm) (2.1)

where each Li is a literal and X1,X2, . . . ,Xs are all the variables occuring in L1 ∨
L2 ∨ . . .∨ Lm.

Definition 2.1.4 (Horn Clause).
A Horn clause is a clause, which contains at most one positive literal.

Definition 2.1.5 (Definite Program Clause).
A definite program clause is a clause, which contains exactly one positive literal.
It is shown in Equation (2.2), where T ,L1, . . . ,Lm are atoms.

T ← L1, . . . ,Lm (2.2)

• We call the part on the left head and the part on the right body.

• If we omit the body, then we get a positive unit clause also known as fact in
Prolog terminology.

• The empty head with non-empty body is called definite goal.

Definition 2.1.6 (Definite Program).
A set of definite program clauses is called a definite logic program.

Only atoms are allowed in the body of a definite logic program. However, in
Prolog, the body can contain negated atoms in non-logical sense, called negation
as failure (Clark [5]).

Definition 2.1.7 (Program Clause).
A program clause is a clause of the form shown in Equation (2.3), where T ,L are
an atoms, and L1, . . . ,Lm are in the form L or negated L.

T ← L1, . . . ,Lm (2.3)

Definition 2.1.8 (Normal Program).
A normal program is a set of program clauses.

Definition 2.1.9 (Predicate Definition).
A predicate definition is a set of program clauses with the same predicate symbol
and arity in their heads.

2.1 inductive logic programming 7

definition example

Definite program clause daughter(X, Y)← female(X),mother(Y,X)
(Logic notation) ∀X∀Y : daughter(X, Y)∨ female(X)∨mother(Y,X)
(Set notation) {daughter(X, Y), female(X),mother(Y,X)}
Program clause daughter(X, Y)← not(male(X)),mother(Y,X)

Table 2.1: Examples for Basic Definitions from Logic

Table 2.1 shows examples illustrating definitions mentioned above also with exam-
ples in different notations.

Definition 2.1.10 (Datalog Clause).
A clause without function symbols of arity n, where n > 1, and recursion is called
a datalog clause.

Definition 2.1.11 (Datalog Program).
A datalog program is a set of datalog clauses.

Datalog with some minor extensions is the language used in our model. All mod-
ifications to the language will be discussed later in Chapter 4.

Definition 2.1.12 (Substitution).
A substitution is a tuple s = V1/t1, . . . ,Vn/tn, where Vi/ti means an assignment
of term ti to variable Vi. When applying a substitution s to a term, atom or clause
all occurrences of the variable Vi are simultaneously replaced by the term ti.

2.1.2 θ-subsumption

One of the operations performed most often in ILP is testing, whether hypothesis
H covers example e from the database assuming some background knowledge
B. This is in fact a logic implication in the form e ∪ B → H. First-order-logic
implication is undecidable problem (Schmidt-Schauss [45]), thus we need some
kind of aproximation (Plotkin [34]). The aproximation of logic implication is a θ-
subsumption and belongs toNP-complete complexity class (Kapur and Narendran
[17]).

Definition 2.1.13 (θ-subsumption).
A clause C θ-subsumes a clauseD (C `θ D) if and only if there exists a substitution
θ such that Cθ ⊆ D.

Example 2.1.1 (θ-subsumption).
C : h(X0)← l1(X0,X1), l1(X0,X2), l1(X0,X3), l2(X1,X2), l2(X1,X3)

2.1 inductive logic programming 8

D : h(c0)← l1(c0, c1), l1(c0, c2), l2(c1, c2)
Cθ subsumes D with θ = {X0/c0,X1/c1,X2/c2,X3/c2}.

According to Santos and Muggleton [44], the standard way of solving θ-subsumption
is based on SLD-resolution in Prolog. The algorithm performs an assignment from
the literals in the clause C to the literals in clause D. This is done with depth-first
search algorithm, where the literals are taken from left to right. Thus the ordering
of variables has a huge impact on the size of the state-space.

2.1.2.1 Time Complexity

The standard algorithm for checking θ-subsumption problems C `θ D has the
time complexity of O(MN), where M and N are the lengths of clauses C and D
respectively. This is because we are mapping each literal from C to D. But in
practice, the SLD-resolution tests, whether current binding is feasible during the
substitution. Thus if M ≈ N, then the problem may be overconstrained and easier
(Santos and Muggleton [44]).

The mentioned work also discusses a complexity improvement. We can map the θ-
subsumption problem to the problem of mapping from V to T , where V and T are
the sets of distinct variables in C respectively D. This approach has a complexity
O(|T ||V |). Since |T |�M and |V |� N, the complexity of this approach is better.

2.1.3 Inductive Logic Programming

ILP is a research area at the intersection of machine learning and logic program-
ming (Lavrac and Dzeroski [26], Muggleton [29]).

Before we introduce basic ILP problems, we need to define a few basic terms. Below
we describe terms like concept or inductive concept learning. Original definitions
can be found in Lavrac and Dzeroski [26].

Definition 2.1.14 (Concept).
Let U be a universal set of objects. Than concept C is a subset of objects in U:
C ⊆ U.

Example 2.1.2 (Concept).
Let U be a set of all patients in register and concept C ⊆ U describing all patients
having given disease.

Definition 2.1.15 (Inductive concept learning).
A concept C is described by examples from a set E+. Moreover, there is a set E−

representing negative examples. Inductive concept learning tries to find a hypoth-
esis H in given language L, such that:

2.1 inductive logic programming 9

• every positive example e ∈ E+ is covered by H,

• no negative example e ∈ E− is covered by H.

Example 2.1.3 (Inductive concept learning).
Let us have the example e (2.4) and hypothesis H (2.5). The hypothesis H covers
example e, because the example e is entailed by the hypothesis H.

e : [Suit1 = diamonds]∧ [Rank1 = 7]∧ [Suit2 = hearts]∧ [Rank2 = 7] (2.4)

H : pair if [Rank1 = 7]∧ [Rank2 = 7]
∨

[Rank1 = 8]∧ [Rank2 = 8]
∨

...
[Rank1 = a]∧ [Rank2 = a]

(2.5)

In practice, there is often no hypothesis covering all positive examples and none
of the negatives because of noise in the data (at least if we want to avoid over-
fitting). Hypothesis is complete if it covers all positive examples, otherwise it is
incomplete. We say that a hypothesis is consistent if it does not cover a negative
example, otherwise it is inconsistent. According to completeness and consistency
we distinguish four types of hypothesis. 1) Consistent and complete, 2) consistent
and incomplete, 3) inconsistent and complete, and 4) inconsistent and incomplete.
These possibilities are depicted in Figure 2.1.

ILP adds background knowledge to inductive concept learning, which can help
when learning more complex hypothesis. Thus the aim of ILP is to define an un-
known relation using relations from the background knowledge, from examples
and constrained by the hypothesis language. The language for description of hy-
pothesis, background knowledge and the examples is a logic program e. g., Prolog.
This means, that creating a hypothesis is in fact Prolog program synthesis. The
main usage of ILP tends to be in bioinformatics and natural language processing.

Example 2.1.4 (ILP from [26]).
The task is to define the target relation daughter(X, Y), which states that person X
is a daughter of person Y, in terms of the background knowledge relations female
and parent. These relations are given in Table 2.2. There are two positive and two
negative examples of the target relation.

It is possible to formulate the definition of the target concept (2.6) in the hypothesis
language of Horn clauses.

daughter(X, Y) ← female(X),parent(Y,X) (2.6)

This definition is consistent and complete with respect to the background knowl-
edge and the training examples.

2.1 inductive logic programming 10

(a) Complete and consistent hypothesis. (b) Incomplete and consistent hypothesis.

(c) Complete and inconsistent hypothesis. (d) Incomplete and inconsistent hypothesis.

Figure 2.1: Completeness and consistency of a hypothesis. The hypothesis H is drawn in
dotted style, the positive examples are dotted as + and the negatives like −.

Training examples Background knowledge

+ daughter(mary,ann). parent(ann,mary). female(ann).
+ daughter(eve, tom). parent(ann, tom). female(marry).
− daughter(tom,ann). parent(tom, eve). female(eve).
− daughter(eve,ann). parent(tom, ian).

Table 2.2: A simple ILP problem: learning the daughter relation. Positive examples
marked as +, negative as −.

2.2 constraint satisfaction problem and combinatorial optimization 11

2.2 constraint satisfaction problem and com-
binatorial optimization

Constraint programming or CSP is an elegant style of declarative programming
widely used in AI, especially suitable for solving combinatorial problems. As we
could see in Kuželka and Železný [21], combining CSP with ILP can lead to very
good results. Main material for construction of this part and studying CSP algo-
rithms is (Barták [4]).

2.2.1 Introduction

Definition 2.2.1 (CSP).
A CSP is a triple (V ,D,C) where

• V is a finite set of variables V = {V1, . . . ,Vn},

• D is a finite set of domainsD = {D1, . . . ,Dn}, where each domainDi contains
possible values for Vi and

• C is a finite (possibly empty) set of constraints on an arbitrary subset of
variables in V .

As a solution to CSP, we want to find an assignment for all variables xi from Di
satisfying the given constraints. The solutions of this problem can vary, and it
depends on us, what criteria we choose. We have following possibilities:

• Find any solution.

• Find all solutions.

• Find a solution with certain quality according to some objective function.

• Find the best solution.

In our algorithm, we will want to find the best (optimal) solution.

Of course, the solution of CSP can be found by systematic search through the whole
state-space generated by variables and their assignments. Unfortunately the state-
space is often very large and thus cannot be searched exhaustively in practice.
Algorithms from CSP are the answer for this problem, because they can reduce the
state-space rapidly.

2.2 constraint satisfaction problem and combinatorial optimization 12

2.2.2 Binarization of Constraints

Most of CSP algorithms are designed for binary or unary constraints. Unary con-
straints are not so interesting, because they can be easily solved by simply remov-
ing unfeasible values for variable Vi from domain Di.

On the other hand, a binary CSP is more interesting, because all n-ary constraints
can be converted to equivalent binary CSP. Binary CSP is often depicted as con-
straint graph (G) where

• each node is a variable (Vi) and

• each arc (Vi,Vj) is a constraint between two variables connected with this arc.

The idea of converting a general CSP problem with constraints of arbitrary arity
to binary CSP is based on introducing new variable that encapsulates the set of
constrained variables. The encapsulated variable has a domain that is a Cartesian
product of the domains of individual variables. Explaining all details about bina-
rization algorithms is not necessary for our work and interested readers can read
Rossi et al. [42] or Bacchus and Van Beek [2]. All further described techniques will
refer to binary CSP.

2.2.3 Consistency Techniques

For description of CSP algorithms we need to define two consistency techniques.

1. Node consistency is the simplest consistency test. A constraint graph is node
consistent if for every node Equation (2.7) holds. The algorithm for perform-
ing node consistency is shown in Listing 2.1.

∀x ∈ Di : Vi = x∧ consistent(Vi) (2.7)

procedure nc

for each V in nodes(G)

for each X in the domain D of V

if any unary constraint on V is inconsistent with X

delete X from D

Listing 2.1: Node Consistency Algorithm

2. Arc consistency ensures, that all arcs are consistent i. e., all binary constraints
are satisfied. Let us have an arc between Vi and Vj labeled as (Vi,Vj). The arc
is consistent if Equation (2.8) holds.

∀x ∈ Di,∃y ∈ Dj : Vi = x∧ Vj = y∧ consistent(Vi, Vj) (2.8)

2.2 constraint satisfaction problem and combinatorial optimization 13

Arc consistency can be enforced by deleting values from the domain of Vi,
for which Equation (2.7) does not hold. This is done by Listing 2.2. However
repeating this algorithm for every node will not make the constraint graph
arc consistent. E. g., if this algorithm reduces domain of variable Vi, then
we need to check the arc (Vj,Vi) again. Thus more sophisticated algorithms
emerged, which uses revise algorithm cleverly (Listing 2.3).

procedure revise(Vi, Vj)

deleted = false;

for each X in Di do

if there is no such Y in Dj such that (X,Y) is consistent

delete X from Di

deleted = true

return deleted

Listing 2.2: Arc Revision Algorithm

procedure AC3

queue = (Vi,Vj) in arcs(G), i!=j

while not queue empty

select and delete any arc (Vk, Vm) from queue

if revise(Vk,Vm)

queue = queue union (Vi,Vk) such that (Vi,Vk) in arcs(G),i!=k,i!=m

Listing 2.3: Arc Consistency Algorithm AC3

2.2.4 Forward Checking

One of the simplest methods for reducing the size of state-space is forward check-
ing. Despite its simplicity, this algorithm reduces state-space rapidly and it has
almost no computational overhead. The algorithm’s pseudocode can be seen in
Listing 2.4.

Typical example of usage of forward checking is the n queen problem. Let us have
n×n chessboard and we ask how to place n queens on chess board, so that none
of them can hit any other in one move. The example on Figure 2.2 shows how the
algorithm works on this problem when n = 4. Notice how much is the state-space
reduced with this simple and computably easy method.

2.2 constraint satisfaction problem and combinatorial optimization 14

procedure forward_checking(cv)

queue = {(Vi,Vcv) in arcs(G),i>cv}

consistent = true

while not queue empty AND consistent

select and delete any arc (Vk,Vm) from queue

if revise(Vk,Vm) then

consistent = not Dk empty

return consistent

Listing 2.4: Forward Checking

(a) Without Forward Checking.

(b) With Forward Checking.
Pruned positions depicted
as ×.

Figure 2.2: Four queens problem state-space. The red square means unfeasible solution
and the green means correct solution.

2.2 constraint satisfaction problem and combinatorial optimization 15

2.2.5 Variable Ordering

A performance of an algorithm for solving CSP highly depends on the order, in
which the variables are taken, thus by choosing good heuristic for variable order-
ing, we can rapidly improve performance of our algorithm. There are two types of
ordering methods:

• A static ordering, where the order of variables is specified before the search
algorithm starts and is never changed.

• A dynamic ordering, in which the ordering is specified during the search
process.

2.2.5.1 First-Fail Principle

A basic idea how to select a next variable in the search process is based on the
first-fail principle, which tries to fail as soon as possible if a branch leading to
infeasible solution is searched. In each state, we pick the variable with the fewest
possibilities remaining dynamically. It is based on the assumption, that if all values
are equally likely to be presented in the solution, then more values there are, the
higher probability of the variable to be successfully binded. Simple analysis of this
heuristic shows that:

• If the current partial solution (branch) does not lead to the correct solution,
then the sooner we realise that the better.

• If the current branch leads to a correct solution, then the variable with the
smallest domain has the smallest probability to be successful hence we will
probably discover the failure sooner.

Thus this heuristics reduces the state-space of CSP by discovering the failure sooner
and we can expect reduced average depth of branches.

2.2.5.2 Most Constrained Variable

Another heuristic with similar idea is to choose those variables, which are the
most constrained. This is especially straightforward heuristic for reasoning in
logic programs and will be used in our implementation, which will be described
in Chapter 5.

2.2 constraint satisfaction problem and combinatorial optimization 16

2.2.6 Branch and Bound

When solving an NP-hard problem, explicit enumeration of all solutions is infea-
sible, because the number of candidate solution grows exponentially. BB is one of
the most used algorithms for solving such difficult problems (Clausen [6]). Let us
have an optimization task T with the payoff function f and the set of solutions S.
If we want to use BB, we have to be able

• to create subtasks T1, T2, . . . , Tn with the same payoff function such as S(T) =
S(T1) ∪ S(T2) ∪ · · · ∪ S(Tn) and compute the optimal value for subtask Tn or
show, that the optimal value does not exist or is worse than the so far optimal
value;

• to compute lower and upper bound for the optimal value within Si. The
lower bound is the best solution so far and the upper bound is the optimistic
estimation of the current solution, i. e., the best value, which we can get in
the current state.

Then the algorithm is pretty straightforward, because it only constructs the tree of
solutions, computing the lower and upper bound for each created node and if the
upper bound is lower than the lower bound, we can skip the current node.

Example 2.2.1 (Branch and Bound).
Figure 2.3 shows, how the algorithm works with following backpack problem
(Demel [8]). Let us have a backpack with capacity C = 50 and five objects. Their
weights and prices are shown in Table 2.3.

• Upper bound estimation is a sum of all possible objects in descending order
in a cost/weight ratio. E. g., the upper bound for the first node is 50 ∗ 1+
26/30 ∗ 107 = 142.73. The value has to be an integer thus the result is 142.

• Branching is done by creating two subtasks, where the first will add an ob-
ject i to the backpack and the second subtask will not add the object to the
backpack. When creating a new node, its upperboundi is computed.

• Each state needs to be

– closed if the solution is not feasible,

– pruned if some node has better upperbound or

– branched otherwise.

• The lowerbound here is the best feasible value from other nodes.

2.2 constraint satisfaction problem and combinatorial optimization 17

object i A B C D E

cost ci 50 107 31 31 69

weight wi 14 30 9 10 27

Table 2.3: Backpack problem specification. Objects are sorted according to cost/weight
ratio in descending order.

9:138

5:129

7:115
13:138

4:over

10:over

12:over

1:142

2:142+A

3:141

-A

+B

-B

6:141
+B

-B

-C

8:141

+C
+D

11:140

-D
-E

+E

Figure 2.3: Branch and Bound example. The state consists from the ID : upperbound.
Edges shows if the object i will be added (+) or deprecated (−). Green states
are optimal and red states are infeasible. Red dashed states are closed (pruned)
by the result from better node, which is connected with dashed backward line.

2.3 artificial neural networks 18

2.2.7 Restarted Strategy

A restarted strategy is a method widely used in various algorithms where ran-
domization1 is used (Baptista and Marques-Silva [3]). Randomness affects selected
variable (in the sense of CSP), thus it can change the depth of branches.

The basic idea is to set a cutoff, where the algorithm will be terminated and then
the best result so far is saved. Then the algorithm is started again from scratch.
This can be repeated several times and in the end, the best result from all restarts
is returned.

The cutoff value can be

• fixed, where the algorithm will stop after given number of backtracks or

• dynamic, where the number of backtracks is adjusted during the computa-
tion.

2.3 artificial neural networks

ANN tries to mimic a real neural network by highly simplified mathematical model.
It creates another approach for solving difficult problems than classic algorithms.
This non-algorithmic approach belongs to the connectionist field of AI, which mod-
els problems as networks composed from simple units. The network learns its
parameters and tries to adapt the network according to provided examples. ANNs
are very widely used in pattern recognition, compression, control tasks etc. Nowa-
days, with great boom of parallel computing it has big advantage, because this
approach is natively parallel thus can be implemented very fast.

The most widely used ANNs have two phases,

• a learning phase, where a number of examples is given and the network
adapts its parameters to these examples, and

• an evaluation phase, where the network produces some information accord-
ing to learned parameters.

2.3.1 Feed-forward Architecture

As we said, ANNs try to mimic simplified mathematical model of real neural net-
work, where the basic element is neuron. Model of biological neuron is highly

1 With randomization we mean the algorithm using random during its computation.

2.3 artificial neural networks 19

complicated, thus we use a simplified version, which is depicted in Figure 2.4.
Simplified neuron has several parts:

• n independent inputs, with modifiable weight wi, where i is the index of the
input,

• transfer function, which sums all weighted inputs together,

• activation function with threshold, which produces output of neuron. Activa-
tion function must be differentiable and the most common one is a sigmoid.

Figure 2.4: Simplified version of model of neuron. The inputs are weighted and then
summed to the result. The activation function is applied on this result.

The way, how the network is composed from neurons i. e., how they are connected,
is not always the same. Here we will describe just the type of ANN architecture,
which is related to our model – feed-forward architecture.

ANN with this architecture has one input layer with i neurons, where i is the num-
ber of features from an example. Then it has one output layer with o neurons,
where o is a size needed for our style of output representation. This architecture
also can have zero or more hidden layers, each with independent count of neurons.
Only neurons between two adjacent layers are fully connected in the forward man-
ner, which means direction from input to output. The other type of connections
are forbidden.

2.3.2 Learning of Artificial Neural Network

To learn an ANN, we need to modify its parameters, which are the weights of
particular neurons. We want to adjust the weights, in order to minimize total error
of the network on the current sample. One of the most often used algorithms for

2.3 artificial neural networks 20

Figure 2.5: Feed-forward artificial neural network with four inputs, five neurons in one
hidden layer and one output neuron.

learning parameters of an ANN is called backpropagation and has many variations.
The next paragraph will briefly describe basic version of backpropagation.

The aim of the backpropagation algorithm is to minimize total error (sometimes
called energy), which is shown in Equation (2.9). Equation (2.10) shows the error
for one particular sample, where

• doi is desired output i of the network for the sample with N0 outputs and

• yoi is actual output i of the network for the sample with N0 outputs.

Etotal =
∑
p

Ep (2.9)

Ep =
1

2
·
No∑
i=1

(doi − y
o
i)
2 (2.10)

The last question is, how to modify weights wjk, to minimize the error of the net-
work. Here backpropagation uses gradient descent, where the weights are changed
according to Equation (2.11). η is a learning parameter, which should be tuned ac-
cording to given problem. It also can be set by some other technique, like Resilient
Backpropagation (RPROP) (Riedmiller and Braun [41]) or similar (Riedmiller [40]),
which modifies η on the fly, according to the current situation in gradient descent.
These automatic methods can lead to better convergence in the ANN learning.

∆wjk = −η · ∂E
∂wjk

(2.11)

2.4 fuzzy logic 21

on-line learning
When the weights are changed immediately after determining new differences
between new and old weights then we speak of so-called On-line Learning. Ac-
cording to Russell et al. [43], On-line Learning requires more iterations of learning
algorithm than batch learning. The algorithm of on-line backpropagation is shown
in Listing 2.5.

procedure backprop

forever

for instance in dataset

compute output for instance

compare outputs with desired values

modify the weights with gradient descend

if testing error < wanted

return

Listing 2.5: On-line Backpropagation Learning

batch learning
In Batch Learning, the weights are cumulated during the learning process and the
update is performed after all samples were processed.

2.4 fuzzy logic

Fuzzy Logic is one of many non-classical logics, more precisely, it is many-valued
logic sometimes also described as probabilistic logic. In contrast to classical logic,
where values are from the set {0, 1}, in fuzzy logic it is an interval [0, 1]. Thus we
can express vague information, which is so common in real life. Fuzzy Logic is
mainly used in Control Theory and Artificial Intelligence. Lofti Zadeh is regarded
as the founder of Fuzzy Logic with paper [51].

There exist many operations in fuzzy logic (sometimes taken as separate logics)
(Klir and Yuan, DuBois and Prade [19, 10]) but in our work, we took inspiration
only from Łukasiewicz logic, concretely from its conjunction and disjunction. Thus
we will describe only this logic.

2.4 fuzzy logic 22

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temperature [C]

F
u
z
z
y
 v

a
lu

e

cold

warm

hot

Figure 2.6: Fuzzy logic used for showing current temperature. For example temperature
15◦C is taken as cold for 0.35, as warm for 0.65 and as hot for 0. In other words,
we can say it is cold a little or quite warm or definitely not hot.

2.4.1 Łukasiewicz Logic

In general, Łukasiewicz logic (Giles [13]) is type of non-classical, many valued
logic, which introduces two, for us, interesting operations. Łukasiewicz disjunc-
tion depicted in Equation (2.12) and conjunction expressed by Equation (2.13)
where

• α and β are values from fuzzy logic i. e., from interval [0, 1].

α
L
∨β =

{
α+β if α+β < 1,
1 else.

(2.12)

α∧
L
β =

{
α+β− 1 if α+β− 1 > 0,
0 else.

(2.13)

3 S TAT E O F T H E A R T I N R E L AT E D
A R E A S

This chapter will review the state of the art in the fields relevant to our model
proposal and problems partly already mentioned in Chapter 2. It will serve as an
inspiration and source of ideas, how to make our algorithm scalable.

3.1 datalog

We already mentioned the syntax of Datalog in Definition 2.1.11 from Section 2.1.
Here, we will focus on Datalog more practically.

Datalog is a subset of Prolog and is mainly used for querying computer databases.
The differences from Prolog are following (Wikipedia [50]):

• Functors are not allowed. For example, one cannot type the query shown in
Equation (3.1), where sonOf is a functor,married a predicate and john,ann, lucy
are constants.

? −married(sonOf(john,ann), lucy). (3.1)

• Datalog restricts the usage of negation and recursion as follows.

– Every variable that appears in the positive literal of a clause has to ap-
pear in some non-negated negative literal of a clause.

– If the variable appears in the negated negative literal then it has to ap-
pear also in some non-negated negative literal.

3.1.1 Existing Datalog Solvers

Nowadays, there exist many reasoners for Datalog language but only a few of them
are still actively developed, which is required for staying up to date with recent
research findings. Most of current actively developed reasoners are university
projects, which are used mainly for academic purposes. Here are the three well-
known, up to date and still actively developed reasoners:

23

3.1 datalog 24

iris
IRIS is a Datalog reasoner with interface to Java language, which is still actively
developed at University of Innsbruck by IRIS Development Team [16]. This project
was the best candidate for modifying it to support our proposed language. It is
written in Java, which can guarantee higher speed than in the case of high level
languages and has very nice Application Interface (API). Unfortunately a code
complexity of this reasoner was too high for patching it for our purposes.

bddbddb
bddbddb was written by John Whaley during his Ph.D. studies at Stanford Uni-
versity. This work was source of several papers dealing mainly with connection
between program analysis and Datalog queries [49, 24].

pydatalog
pyDatalog is the newest reasoner on the scene and tries to bring Datalog program-
ming into python language. More details can be found in [38].

Besides these open-source licenced tools, there are various commercial products,
which are not accessible for free and we were not able to try them.

3.1.2 Suitability for Algorithm

Existing reasoners described above are not suitable for our algorithm because of
two main reasons:

1. Language Differences: The first reason is the lack of ability to specify weight
for each rule or modify current reasoners to accept these weights. The modi-
fied syntax with added weights is show on 3.2.

[w] [Datalog formula] (3.2)

Character w means a weight of the rule and has a huge impact on the algo-
rithm for reasoning. Actually it completely changes the reasoning algorithm
with all of its optimizations.

2. Reasoner Differences: All reasoners mentioned in section 3.1.1 (Existing Dat-
alog Solvers) suffer from the fact, that Datalog language and its reasoners
are designed and optimized for querying databases and thus try to find all
possible occurrences. This property is useless for us (we need only one solu-
tion) and makes the computation unfeasible for large sets of rules and large
ground knowledge. For example all of the reasoners failed for insufficiency

3.2 θ-subsumption engines 25

of memory when we tried to use them to reasoning about datasets from
Chapter 6.

The conclusion about existing Datalog reasoners is that they are not applicable
for our purposes. This means that we have to write our own simplified Datalog
reasoner. Our simplified Datalog reasoner must

• work with weight extension in Datalog and

• be optimized for finding only one (best) solution.

3.2 θ-subsumption engines

We will study the most recent θ-subsumption engines in this section. Nowadays,
there exist three competitive θ-subsumption engines. They are

• Django by Maloberti and Sebag [28],

• Subsumer by Santos and Muggleton [44] and

• Resumer by Kuželka and Železný [21].

The study of these engines gives us a guide, how to implement θ-subsumption
effectively. Many ideas and optimizations are shared between all reasoners, thus
we chose only the most successful one. The overall comparison of these engines on
the Phase Transition dataset (Giordana and Saitta [14]) is taken from Santos and
Muggleton [44] and depicted in Table 3.1.

Region
Yes No PT Overall

Engine CPU RAM CPU RAM CPU RAM CPU RAM

Django 4,404 2,248 N/A N/A 78,736 3,037 15,023 2,361

Resumer1 99 608 544 1,167 225 749 301 855

Resumer2 75 578 154 1,136 120 875 119 883

Subsumer 190 75 442 141 292 92 316 105

Table 3.1: Performance comparison between Django, Resumer1, Resumer2 and Subsumer.
The results are summary of more detailed results from Santos and Muggleton
[44] performed on the Phase Transition dataset. CPU times are in seconds and
usage of RAM is in megabytes.

According to the results from Table 3.1, the winner is Resumer and we will focus
on this reasoner in detail, because it outperformed remaining two engines and is

3.2 θ-subsumption engines 26

written in imperative language as well as our algorithm. Note that there are two
Resumers in the table. Resumer2 is a version with enabled restart strategy and
Resumer1 without this function.

3.2.1 Resumer2

Resumer2 can be considered as state of the art in the field of θ-subsumption (Santos
and Muggleton [44]). We found the following features viable for an inspiration and
applicable to our algorithm.

• Restarted strategy.

• Usage of CSP algorithms.

• Heuristic for variable ordering when performing substitution to the logic
variables.

• Written in Java. Selection of typed programming language is important for
an effective implementation. Also presence of some advanced data structures
can be favourably utilized. For example caching possibilities in Java are very
comfortable e. g., with weak hash maps.

4 P R O P O S E D M O D E L

We propose a novel machine learning model combining parts from ILP and ANN.
It tries to learn disjunction’s weights in the logic program with imaging the logic
program as a network and then performing the backpropagation algorithm. By this
experimental model, we want to find out if an inspiration from ANN implemented
into the environment of logic programming can be advantageous.

This chapter will completely describe the proposed model in the following sec-
tions.

4.1 We begin with a language used for model description. This language is called
n-layered λκ-program and is mainly inspired by Datalog. Here, we describe
all parts of this language including an extension of disjunctions with weight
parameter.

4.2 Then we continue with a construction of network model called n-layered λκ-
template. It transforms n-layered λκ-program into a network composed from
two types of nodes corresponding to the literals. The network is composed
from interleaving layers of two types.

4.3 When all nodes in n-layered λκ-template are grounded then we speak about
n-layered λκ-network. This grounded structure is described in next section
as well as its main elements – grounded nodes. Also an important term
maximal substitution is described.

4.4 After that we provide two examples for better understanding terms specified
so far and for providing an insight into model computation.

4.5 A learning algorithm is presented in the one of the last sections. One learn-
ing step is divided into two phases. In the first phase it transforms n-layered
λκ-template to n-layered λκ-network by maximal substitution. After it a mod-
ified backpropagation algorithm is designed.

4.6 Finally an extension of the model is proposed to correctly perform a classifi-
cation task.

27

4.1 λκ-program 28

4.1 λκ-program

Definition 4.1.1 (n-layered λκ-program).
n-layered λκ-program is a tuple (H0,H1,H2, . . . ,Hn−1) of sets of function-free Horn
clauses, extended with weights, satisfying the following constraints:

1. Let P be a predicate symbol. Let H+
P be the set of all clauses of the program,

which contain a positive literal based on the predicate symbol P and, simi-
larly, let H−

P be the set of all clauses of the program, which contain a negative
literal based on P. It must hold that if C ∈ H−

P ∩Hi and C ′ ∈ H+
P ∩Hj then

j < i and i+ j is an odd number.

2. If C ∈ H2k+1, P is the predicate symbol of the positive literal in C and if P
appears in another clause C ′ ∈ Hi then it must hold i > 2k+ 1.

3. If C ∈ H2k then C has at most one negative literal. The predicate symbol of
any negative literal in C can occur as positive literal in clause C ′ if for all sets
H2k such that C ′ ∈ Hj it holds j < 2k and 2k+ j is an odd number.

A clause contained in a set H2k+1 (H2k) where k ∈ N is called λ-clause (κ-clause).
A literal is a λ-literal (κ-literal, respectively) if it appears as a positive literal in a
λ-clause (κ-clause) or as a negative literal in a κ-clause (λ-clause).

Informally, a λκ-program corresponds to a Datalog program with weighted clauses,
composed of two types of clauses: λ-clauses and κ-clauses. The literals in the
bodies of λ-clauses can be only literals defined by some κ-clauses and vice versa.
Moreover, the literals in the bodies of λ-clauses and κ-clauses must be defined by
clauses contained in the sets of clauses (Hi) with lower indices (i.e. in lower layers of
the program). This condition effectively forbids recursion. No two λ-clauses can have
the same predicate symbol of the positive literal. Any κ-clause can have at most
one negative literal. These last two conditions pose no problem for generality
of the approach because any non-recursive Datalog program can be apparently
transformed to a λκ-program as Example 4.1.1 illustrates.

Example 4.1.1.
Datalog program (Listing 4.1) can be transformed to λκ-program (Listing 4.2). Dis-
junction is emulated by two κ-clauses with weights w = 1 and auxiliary λ-literals.
λ-literal a1 emulates negative literals (body) of the first Datalog clause and a2

negative literals of the second one.

4.2 λκ-template 29

a(X) :- b(X), c(Y), d(Z).

a(X) :- e(X), f(X).

Listing 4.1: Datalog Program

/* kappa-clauses */

a(X) :- a1(X).

a(X) :- a2(X).

/* lambda-clauses */

a1(X) :- b(X), c(Y), d(Z).

a2(X) :- e(X), f(X).

Listing 4.2: 3-layered λκ-program

Definition 4.1.2 (Join of two λκ-programs).
Let us have an n-layered λκ-program P1 = (H0,H1, . . . ,Hn−1) and an m-layered
λκ-program P2 = (J0, J1, . . . , Jm−1), where m,n ∈ N. The join (⊕) of these two
λκ-programs is an o-layered λκ-program P in Equation (4.1), where o = max{m,n}.

P = P1⊕P2 =


(H0 ∪ J0,H1 ∪ J1, . . . ,Hm−1 ∪ Jm−1) if m = n,
(H0 ∪ J0,H1 ∪ J1, . . . ,Hm−1 ∪ Jm−1, . . . ,Hn−1) if m < n,
(H0 ∪ J0,H1 ∪ J1, . . . ,Hn−1 ∪ Jn−1, . . . ,Hm−1) if m > n.

(4.1)

Definition 4.1.3 (λκ-sample).
λκ-sample is a 1-layered λκ-program P = (H0). H0 is non-empty set containing
only ground facts representing the sample.

Definition 4.1.4 (λκ-rules).
λκ-rules is an n-layered λκ-program P = (H0,H1, . . . ,Hn−1) where H0 = ∅ and
n > 1.

4.2 λκ-template

Definition 4.2.1 (n-layered λκ-template).
n-layered λκ-template is a weighted directed acyclic graph G = (V ,E, c) corre-
sponding to an n-layered λκ-program P = (H0,H1, . . . ,Hn−1) as described below:

1. Let L (K) be the set of all predicate symbols of λ-literals (κ-literals) in P. Then
V = L∪K∪ Vbias, where Vbias = {∀n−2i=0 vi}.

2. E = E0 ∪ Ebias, where:

• E0 = {e = (x,y) | x ∈ H+
p ∩Hi ∧ y ∈ H−

p ∩Hi}

• Ebias = {e = (vi,y) | y ∈ H+
p ∩Hi}

4.2 λκ-template 30

3. c(e) is a weight function, which assign weight to every edge e = (x,y):

c(e) =


1.0 if x ∈ K∧ y ∈ L,
we if x ∈ L∧ y ∈ K,
q
y
0 if x ∈ Vbias ∧ y ∈ L,
w
y
0 if x ∈ Vbias ∧ y ∈ K.

where

• we is weight of κ-clause with positive literal y and negative literal x.

• wy0 is bias for node representing κ-literal y.

• qy0 = −deg+(y) is bias for node representing λ-literal y. The inspiration
comes from approximation of fuzzy logic conjunction and disjunction
by the sigmoid function.

A node n ∈ L (n ∈ K) is called λ-node (κ-node) and corresponds to a λ-literal (κ-
literal) in an n-layered λκ-program. All λ-nodes (κ-nodes) corresponding to the
positive literals from the same sets H2k+1 (H2k) create λ-layer2k (κ-layer2k+1).

Informally, an n-layered λκ-template corresponds to a weighted directed graph
constructed from an n-layered λκ-program. Graph nodes are all literals plus bias
nodes and the edges are connections between negative and positive literals from
the same clauses plus bias edges. This means, when the node nl represents a λ-
literal l (called λ-node) then all nodes representing negative κ-literals of λ-clause
with a positive literal l are connected to nl with weight 1. If the node nk repre-
sents a κ-literal k (called κ-node) then all nodes representing λ-literals from bodies
(negative literals) of all κ-clauses with literal k are connected to nk with weight of
corresponding κ-clause. Moreover, every node representing a positive literal has a
bias. The bias for every κ-node representing a positive κ-literal is a real number,
which can be changed in the learning process. The bias for λ-node is set in a static
way and is computed as shown in Definition 4.2.1. This is a model with structure
similar to ANN as one can see in Example 4.2.1.

Example 4.2.1 (5-layered λκ-template).
We can notice several things from the example of 5-layered λκ-network depicted
in Figure 4.1.

• This particular network has two hidden λ-layers and one hidden κ-layer.

• The λ-clauses create black connections, which cannot be learnt and emulate
conjunctions.

• The κ-clauses create blue connections, which can be learnt and emulate dis-
junctions.

4.3 λκ-network 31

• Each node from one layer is connected to each node from an adjacent layer.
Note that this is not required. Some connections can be dropped, as well as
connections between non-adjacent layers are permitted, but still only between
two different types of layers.

• The learning ability consists in adjusting the weights of blue lines. The learn-
ing phase will be described in Section 4.5.

Figure 4.1: Proposed n-layered λκ-template. κ-nodes are changing with λ-nodes and each
type of node has its own type of connection. Weights of black connections
cannot learn and they represent conjunctions in the clause. Otherwise weights
of blue connections can learn and simulate disjunctions. The first layer is com-
posed from κ-nodes, which are the elementary predicates contained in the
examples.

4.3 λκ-network

Definition 4.3.1 (n-layered λκ-network).
n-layered λκ-network is a fully grounded n-layered λκ-template. The nodes in an
n-layered λκ-network are called grounded λ-nodes (κ-nodes).

Definition 4.3.2 (Ground node output (nout)).
Let fk (gk) be nondecreasing differentiable real function with finite limits in −∞
and∞. Function fk (gk) is an activation function for κ-layer2k (λ-layer2k+1). Further,
let in(n2k) (in(n2k+1)) denote the set of all ground nodes x connected to ground

4.3 λκ-network 32

node n2k (n2k+1) with edge e = (x,n2k) (e = (x,n2k+1)). Then the output of a
ground node n from layer 2k (2k+ 1) is:

nout(n2k) =


1 if k = 0,

0 if ∀n∈in(n2k)output(n) = 0,

fk

(
w
n2k
0 +

∑
x∈in(n2k)w

e · output(x)
)

else.

(4.2)

nout(n2k+1) =

0 if ∃n∈in(n2k+1)output(n) = 0,

gk

(
q
n2k+1

0 +
∑
x∈in(n2k+1)

output(x)
)

else.

(4.3)

If we apply the nout function to the node Nout representing a positive literal from
layer n− 1 (last layer) in an n-layered λκ-network M, we recursively compute the
output (out) of M: out(M) = nout(Nout). Note that wn2k0 (qn2k+1

0) means the bias
for node n2k (n2k+1) and not the exponents.

Definition 4.3.3 (Maximal substitution (max)).
The maximal substitution (max) represents groundings for all nodes in n-layered
λκ-template (literals in n-layered λκ-program) such the resulting n-layered λκ-
network M has maximal output out(M) among all possible groundings.

Definition 4.3.4 (n-layered λκ-program output (out)).
Let P be an n-layered λκ-program and M a corresponding n-layered λκ-network
having the maximal substitution property. Then the output out(P) = out(M).

The definitions above say that an n-layered λκ-template represents a template for an
n-layered λκ-network, where all nodes are fully grounded. This is the solution of
an n-layered λκ-program and one can imagine it as a structure similar to proof tree
from logical programming (Flach [11]). The output of each ground node in an n-
layered λκ-network emulates output of an artificial neuron (Figure 4.2). Moreover,
the property of logical conjunction (disjunction) is preserved by the first condi-
tion in Equation (4.2) (Equation (4.3) eventually). κ-nodes from layer 0 represents
ground facts and the ground fact’s output is always 1. With this knowledge, we
can compute the output of an n-layered λκ-network representing the solution of
an n-layered λκ-program. The solution with the highest value for given n-layered
λκ-program is called maximal substitution and the algorithm for computing it is in
Listing 4.3.

4.3 λκ-network 33

procedure lambda_maximal_substitution(lambda-node N)

best = 0

for all possible substitutions S in N

current = 0

for all nodes M connected with N with respect to S

if M is contained in the example

current += 1

elif M is not contained in the example

current += 0

else (M is node with another connections)

current += kappa_maximal_substitution(M)

current = activation_function(current)

if current > best

best = current

return best

procedure kappa_maximal_substitution(kappa-node N)

best = 0

for all possible substitutions S in N

current = 0

for all nodes M connected with N with respect to S

current += lambda_maximal_substitution(M) * weight(M,N)

current = activation_function(current)

if current > best

best = current

return best

Listing 4.3: Maximal Substitution

4.4 two examples 34

Figure 4.2: A node, which is an equivalent to ANN neurons. The inputs to the node have to
be nodes of different type. If the node is κ-node then the weights w ∈ Rn. For
λ-nodes, the weights are equal to one. Inputs are weighted and then summed
to the result. The activation function is applied on this result.

4.4 two examples

In this section, we will provide two examples for better understanding the terms
described so far e. g., n-layered λκ-program, n-layered λκ-template, n-layered λκ-
network, maximal substitution etc. For each example we provide listing with an
n-layered λκ-program and figures with generated n-layered λκ-template and n-
layered λκ-network.

4.4.1 First Example

The first example should mainly demonstrate the term maximal substitution. This
demonstration is done on the following simple example. Let us have a graph
depicted in Figure 4.3. Each node has different color and the task is to find a path
from the node 1 to the node 4 through colored nodes, which contains the biggest
fraction of the blue color.

A 5-layered λκ-program describing the situation is in Listing 4.4. The program is
divided into five parts separated by a blank line. Note that the first one can be
separately considered as a λκ-sample and other lines describe λκ-rules.

1. Description of a graph depicted in Figure 4.3 i. e., edges between nodes and
nodes colors.

2. λ-clauses with connection to the literals presented in the sample.

4.4 two examples 35

3. κ-clauses defining the intensity of the blue color in each node.

4. λ-clause with definition of the most blue path from node 1 to node 4.

5. κ-clause for the output.

A structural representation of the 5-layered λκ-program mentioned in the previous
paragraph is depicted in Figure 4.4 in the form of a 5-layered λκ-template. Then it
is fully grounded to 5-layered λκ-program (Figure 4.5). Remind that the grounding
is holding maximal substitution definition. We can see, that this graph contains
the solution for given problem. It found a correct path 1− 6− 5− 4 with output
value computed by Equation (4.4), where fi represents an activation function for
i-th layer and M is given 5-layered λκ-program.

out(M) = f4(g3(f2(g1(1) · 0.8+ g1(1) · 0.9)) · 1.0) (4.4)

1

2

6

3

5

4

Figure 4.3: Directed graph with colored nodes. The task is to find a path from node
number 1 to node number 4 such as the colors of visited nodes will be as blue
as possible.

4.4 two examples 36

/* kappa-clauses */

edge(1,6),edge(6,5),edge(5,4),edge(1,2),edge(2,3),edge(3,4), light_green(1),

dark_green(2),dark(3),red(4),dark_blue(5),light_blue(6).

/* lambda-clauses */

lg(X) :- light_green(X).

dg(X) :- dark_green(X).

d(X) :- dark(X).

r(X) :- red(X).

db(X) :- dark_blue(X).

lb(X) :- light_blue(X).

/* kappa-clauses */

0.4 blue(X) :- lg(X).

0.9 blue(X) :- db(X).

0.6 blue(X) :- dg(X).

0.7 blue(X) :- d(X).

0.5 blue(X) :- r(X).

0.8 blue(X) :- lb(X).

/* lambda-clauses */

most_blue_path :- edge(1,B), edge(B,C), edge(C,4), blue(B), blue(C).

/* kappa-clause */

1.0 output :- most_blue_path.

Listing 4.4: λκ-program for the Most Blue Path Problem

4.4 two examples 37

light_green light_bluedark_blue dark_green dark rededge

lg db lb dg d r

blue

0.4 0.9 0.8 0.6 0.7 0.5

most_blue

output

1.0

Figure 4.4: 5-layered λκ-template for the most blue path problem. Boxes are nodes rep-
resenting the literals from λκ-sample, ovals are λ-nodes and octagons are κ-
nodes.

edge(1,6) edge(6,5) edge(5,4) light_blue(6) dark_blue(5)

lb(6) db(5)

blue(6)

0.8

blue(5)

0.9

most_blue

output

1.0

Figure 4.5: 5-layered λκ-network for the most blue path problem. Boxes are grounded
nodes representing the literals from λκ-sample, ovals are grounded λ-nodes
and octagons are grounded κ-nodes.

4.4 two examples 38

4.4.2 Second Example

The second example is fully artificial and comes from one of our unit tests. It
should fully show syntactic possibilities of n-layered λκ-program (Listing 4.5).
Again, the first part can be separately considered as λκ-sample and the rest as
λκ-rules.

Then we can see 5-layered λκ-template (Figure 4.6) and 5-layered λκ-network (Fig-
ure 4.7), which are much more complicated than in the previous example. Here
we can notice several things.

• Connections can be made also between non-adjacent layers. But always be-
tween layers of different types.

• One node from 5-layered λκ-template can have several groundings in the
form of grounded nodes in a 5-layered λκ-network.

• 5-layered λκ-network as well as 5-layered λκ-template need not to be fully
connected like feed-forward ANN. It is only on us how we construct the
n-layered λκ-program but the more connections there are, higher chance to
learn significant structures.

4.4 two examples 39

/* kappa-clauses */

bond(b,b), bond(a,b), bond(b,c), bond(c,a), bond(c,d), bond(c,e), bond(d,e),

atom(a,c), atom(b,c), atom(c,c), atom(d,cl), atom(d,br).

/* lambda-clauses */

l21(X) :- atom(X,cl), bond(Z,Y).

l22(X) :- atom(X,br), atom(X,cl).

l23(X) :- atom(X,cl), bond(X,Y).

l24(X) :- bond(X,b).

/* kappa-clauses */

1.1 k21(X) :- l21(X).

2.3 k21(X) :- l24(X).

1.2 k22(X) :- l21(X).

1.3 k22(X) :- l22(X).

1.4 k22(X) :- l23(X).

1.5 k23(X) :- l23(X).

2.5 k24(X) :- l24(X).

/* lambda-clauses */

l11 :- k21(X), k22(Y), k21(Y).

l12 :- k21(a), k22(Y), k24(Z).

l13 :- k22(X), bond(X,Y).

l14 :- k23(X), bond(X,Y).

/* kappa-clauses */

0.1 k11 :- l11.

0.2 k11 :- l12.

0.3 k11 :- l13.

0.4 k11 :- l14.

Listing 4.5: More Complex λκ-program

4.4 two examples 40

k11

l11

0.1

l12

0.2

l13

0.3

l14

0.4

k21k22 k24

bond

k23

l21

1.1

l24

2.31.2

l22

1.3

l23

1.4 1.5 2.5

atom

Figure 4.6: 5-layered λκ-template for more complex example. Boxes are nodes represent-
ing the literals from λκ-sample, ovals are λ-nodes and octagons are κ-nodes.

k11

l11

0.1

l12

0.2

l13

0.3

l14

0.4

k21(a)k21(d) k22(d) k24(a)

bond(d,e)

k23(d)

l24(a)

2.3

l21(d)

1.1 1.2

l22(d)

1.3

l23(d)

1.4 1.52.5

bond(b,b) atom(d,cl) atom(d,br) bond(a,b)

Figure 4.7: 5-layered λκ-network for more complex example. Boxes are grounded nodes
representing the literals from λκ-sample, ovals are grounded λ-nodes and oc-
tagons are grounded κ-nodes.

4.5 learning 41

4.5 learning

Definition 4.5.1 (λκ-rules learning).
λκ-rules learning is searching for λκ-rules P∗ from the set of all possible λκ-rules
P with respect to Equation (4.5). E is a set of all training samples in the form of
λκ-samples and ref(e) denotes a referential output of sample e.

arg min
P∗∈P

∑
e∈E

(out(P∗ ⊕ e) − ref(e))2 (4.5)

Informally, the aim of learning process is to learn weights of disjunctions in an
n-layered λκ-program such that the difference between the reference output and
the output of an n-layered λκ-program composed from λκ-rules and λκ-sample is
minimal over all training samples. The situation is not simple as in the case of
ANN (optimizing just weights) because of the logical nature of the model. Modi-
fied weights can cause a change of maximal substitution, thus updating maximal
substitution during learning is needed. One learning algorithm (Listing 4.6) step
is composed from two phases:

1. For given n-layered λκ-template find n-layered λκ-network with maximal
substitution.

2. Learn weights in n-layered λκ-network created in step 1.

procedure learn

forever

lk-network = findMaximalSubstitution(lk-template)

for given number of steps

modifyWeightsWithBackprop(lk-network)

updateWeights(lk-template, lk-network)

if learningErr < wanted OR maximum steps reached

return

Listing 4.6: Learning Algorithm

4.5.1 Finding Maximal Substitution

The algorithm for finding a maximal substitution was described in Section 4.3.

4.5 learning 42

4.5.2 Gradient Descent

We propose a modified backpropagation algorithm known from ANN for learn-
ing weights of n-layered λκ-network. This algorithm performs a gradient descent
on the cost function shown in Equation (4.6). Note that the gradient descent is
performed on n-layered λκ-network composed from λκ-rules P and λκ-sample e.
Modified weights from n-layered λκ-network are projected back to n-layered λκ-
template. This also means, that weights missing in n-layered λκ-network are not
updated in the corresponding n-layered λκ-template.

J =
1

2
· (ref(e) − out(P⊕ e))2 (4.6)

Below we provide all elements needed for minimizing the cost function with mod-
ification of weights. For better readability of provided equations let us define
following (note that upper indices are not exponents):

• κji (λji) means an output of i-th ground node from layer j = 2k (j = 2k+ 1).

• wjmn (vjmn) is a weight of edge betweenm-th and n-th node in j-th and (j+ 1)-
th layer. If m = 0 than it is a bias.

• mj is number of nodes in j-th layer

Let κn−1o be the last κ-node in n-layered λκ-network (P⊕ e). Equation (4.7) displays
partial derivative of cost function with respect to a weight w.

∂J

∂wzab
= −2 · (ref(e) − out(P⊕ e)) · ∂out(P⊕ e)

∂wzab
=

= −2 · (ref(e) − out(P⊕ e)) · ∂κ
n−1
o

∂wzab
(4.7)

We see that the next step is to compute partial derivatives of the κn−1o output with
respect to the given weight. Here, two options emerge.

1. One for computing partial derivative with respect to the bias weight i. e.,
we are modifying bias weight in current step. This is computed by Equa-
tions (4.8) to (4.10).

2. The second option is for derivation with respect to the weight from λ-node
to κ-node. This can be computed by Equations (4.11) to (4.13).

partial derivatives with respect to bias weight

∂κ
j
i

∂w
j−1
0i

= f ′j

(
w
j−1
0i +

mj−1∑
a=1

w
j−1
ai · λ

j−1
a

)
(4.8)

4.5 learning 43

∂κ
j
i

∂wz0b
= f ′j

(
w
j−1
0i +

mj−1∑
x=1

w
j−1
xi · λ

j−1
x

)
·
mj−1∑
x=1

w
j−1
xi ·

∂λ
j−1
x

∂wz0b
, z 6= j− 1 (4.9)

∂λ
j
i

∂wz0b
= g ′j

(
v
j−1
0i +

mj−1∑
x=1

κj−1x

)
·
mj−1∑
x=1

∂κ
j−1
x

∂wz0b
, z 6= j− 1 (4.10)

partial derivatives with respect to weight between nodes

∂κ
j
i

∂w
j−1
ki

= f ′j

(
w
j−1
0i +

mj−1∑
a=1

w
j−1
ai · λ

j−1
a

)
· λj−1k (4.11)

∂κ
j
i

∂wzab
= f ′j

(
w
j−1
0i +

mj−1∑
x=1

w
j−1
xi · λ

j−1
x

)
·
mj−1∑
x=1

w
j−1
xi ·

∂λ
j−1
x

∂wzab
, z 6= j− 1 (4.12)

∂λ
j
i

∂wzab
= g ′j

(
v
j−1
0i +

mj−1∑
x=1

κj−1x

)
·
mj−1∑
x=1

∂κ
j−1
x

∂wzab
, z 6= j− 1 (4.13)

final weight change
All these equations were needed for final computation of new weight differential
shown in Equation (4.14). This update value is computed for each weight, which
participates on the network output i. e., output value of corresponding κ-node is
non-zero.

∆wijk = −η · ∂J
∂wijk

(4.14)

where

• η is a learning rate and the rest of notation was already introduced in de-
scription of equations above.

4.6 classification network 44

4.6 classification network

Output value for an n-layered λκ-program (P = R⊕ s) composed of λκ-rules R
and a λκ-sample s computed by our algorithm is a real number (out(P) → R).
When dealing with a two-class classification problem, this value can be assigned
the following meaning:

• The lower value we get the higher chance for classification to 0.

• The higher value we get the higher chance for classification to 1.

Thus, for classification, we also need a threshold th such that:

classify as 1 if out(P) > th
classify as 0 if out(P) < th.

(4.15)

We propose a simple algorithm for finding threshold th, which works as follows:

1. Sort all training λκ-samples S with respect to the outputs out(P = R⊕ s),
where s ∈ S. This can be done in O(n · logn), where n = |S|.

2. Select λκ-sample s ′ such that threshold th ′ = out(P = R⊕ s ′) minimizes the
error of classification function 4.15.

3. If the selected λκ-sample is the first or the last in the sorted sequence, then
the final threshold is th = out(P = R⊕ s ′) and the algorithm ends here.

4. With respect to the selected λκ-sample s we have two choices:

• If ref(s) = 1, then pick λκ-sample s ′′, which is just on the left in the
sorted sequence.

• Else (ref(s) = 0) pick λκ-sample s ′′, which is just on the right in the
sorted sequence.

5. The final threshold th is the mean between these two outputs as shown in
4.16. Let th ′ = out(R⊕ s ′) and th ′′ = out(R⊕ s ′′). A schematic picture is in
Figure 4.8.

th = min (th ′, th ′′) +
|th ′ − th ′′|

2
(4.16)

4.6.1 Multi-criteria Classification

Our model is also usable for multi-criteria classification. The only difference be-
tween single and multi-criteria classification is in the number of κ-nodes in the

4.6 classification network 45

Figure 4.8: Determining the threshold th. Picture shows output values for samples de-
picted as balls (positive – blue, negative – red). The algorithm finds the best
threshold (th ′) from λκ-sample’s outputs. Then it locates its neighbour with
opposite classification and output th ′′. Finally the computed threshold th is
in the middle between th ′ and th ′′.

Figure 4.9: Figure that shows version of model for multi-criteria classification. The only
difference is the output layer, where n kappas is presented. n is number of
criteria.

4.6 classification network 46

output layer as known from ANN. A network suitable for multi-criteria classifica-
tion is in Figure 4.9.

5 P R O P O S E D A LG O R I T H M

This chapter describes implementation details of the proposed algorithm in three
sections. In this chapter we omit n-layered before terms λκ-program, λκ-template
and λκ-network because of space issues in algorithm schemas.

5.1 The first section describes an implementation of the learning algorithm. Each
part of the algorithm is picked up and described in detail.

5.2 The second section describes a classification phase of the algorithm in a sim-
ilar manner.

5.3 Finally, the main part of this chapter is about algorithm bottleneck detection
and about designing improvements for speeding it up. This is necessary for
making the proposed learning model scalable and ready for real experiments.

5.1 learning phase

Schema of a learning phase used in our algorithm can be seen in Figure 5.1. The
inputs to the learning algorithm are λκ-rules and λκ-sample. The output of learn-
ing algorithm is a trained λκ-rules with modified disjunction weights according to
λκ-sample.

λκ-rules → λκ-template The algorithm of learning phase starts with translat-
ing λκ-rules into an internal structural representation. This is shown as transition
λκ-program→ λκ-template. Internal representation provides an effective way, how
to perform various operations e. g., determining the maximal substitution.

λκ-sample → chunks Similar operation with λκ-samples is then performed.
Special structures representing the samples are created. These structures are called
chunks. More about this structure granting effective queries is described later in
Section 5.3.3.1.

λκ-template → λκ-network λκ-network arises from λκ-template by ground-
ing all nodes with respect to maximal substitution. In this phase, several λκ-

47

5.1 learning phase 48

Figure 5.1: A learning schema. Blue rectangles means inputs into learning process and
the red rectangle means the bottleneck of algorithm. Double squares repre-
sent multiple objects in that place. Lines show transition between phases or
participation of phases.

5.2 classification phase 49

networks emerge, for each λκ-sample joined with λκ-template one. This operation
is the bottleneck of our algorithm and will be discussed in detail later (Section 5.3).

λκ-network → backprop Main part of learning is done in the next phase by a
modified on-line backpropagation algorithm (Section 4.5). It is performed on each
λκ-network composed in the previous phase. Modified weights are immediately
updated in the λκ-template, which means, that weights in all other λκ-networks are
updated too. Similarly to backpropagation from ANN several cycles are performed.

backprop → λκ-template After performing modified backpropagation to all
λκ-networks the algorithm returns to the place depicted as λκ-template. At this mo-
ment, the transition λκ-template→ λκ-network is repeated but with new modified
weights. The new weights often cause change of the maximal substitution. Several
cycles of Backprop→ λκ-template are performed in the learning algorithm.

5.1.1 Threshold Learning

When the λκ-template is learnt well, we finish the learning process by threshold
learning as described in Section 4.6.

5.2 classification phase

A classification phase of our algorithm is depicted in Figure 5.2. The inputs to this
phase are: (1) learnt λκ-rules, (2) λκ-sample, which we want to classify and (3) the
output threshold. A classification into one of two classes is then performed.

All operations are performed in the same manner as in the learning case with one
exception, the transition λκ-network→ classify.

λκ-network → classify The classification is done according to the λκ-network
output computed with maximal substitution and comparing with output thresh-
old.

5.2 classification phase 50

Figure 5.2: A classification schema. Blue rectangles means inputs into classification pro-
cess and the red rectangle means the bottleneck of algorithm. Lines show tran-
sition between phases or participation of phases. The green rectangle shows
the final phase.

5.3 effective implementation details 51

5.3 effective implementation details

In this section, we will provide an analysis of the learning and classification al-
gorithms with the aim of identifying the biggest performance issues. Then we
will design a basic approach how we can solve the bottleneck in a naive way, im-
practical for large instances (real data experiments). After it, we propose several
improvements to the basic approach. These improvements make the algorithm fast
enough to perform experiments on real data.

5.3.1 Biggest Bottleneck

Both, the classification as well as the learning algorithm can be implemented in
a straightforward way with one exception. It is the transition λκ-template → λκ-
network. As we know, this transition requires computing of a maximal substitution
for the λκ-template composed from λκ-sample and λκ-rules. This part of algorithm
involves searching for a solution in a huge search-space and in addition, it is re-
peated several times. Thus it is the crucial part of proposed algorithms and we
need to solve it in an effective way.

5.3.2 Basic Approach for Solving λκ-template → λκ-network.

When solving a λκ-template→ λκ-program transition in a typical naive approach,
the procedure is as follows. Take the output node representing κ-clause from
output layer and start solving it in a typical recursive manner. This means to bind
all variables from the clause and solve all clauses, which are connected to this node.
This is done recursively until the input layer is reached and presence of grounded
nodes from input layer is checked in the λκ-sample. This approach induces a few
questions, which can affect speed of algorithm rapidly.

• In which order to take variables when grounding a given clause?

• How to skip a binding, which cannot lead to success?

Next sections are about answering these questions and designing a few optimiza-
tions, which speedup a basic approach for solving λκ-template→ λκ-network.

5.3 effective implementation details 52

5.3.3 Sample Representation

One of the most often performed action in our algorithm is querying, whether a
given literal presents in the λκ-sample. Thus this action should be fast and design-
ing a special data structure is needed. Two types of queries can be performed.

1. Grounded query means that we want to know, whether a literal p(a,b, c,d, e, f)
is contained in the λκ-sample. This can be trivially satisfied by saving all lit-
erals from sample to some data structure with fast existential queries e. g.,
hash set.

2. Partially grounded query. This situation is much more interesting. If we
want to find a literal p(a, ∗, ∗,d, ∗, f) effectively, where ∗ means anything,
then all possible combinations with ∗ must be enumerated in this structure.
Unfortunately we can see a combinatorial explosion, when we save all possi-
ble combinations. Thus some suitable algorithm for solving this problem is
needed.

5.3.3.1 Literal Partitioning

Every literal in the λκ-sample is partitioned into several smaller pieces with n

original terminals. The number n can be adjusted according to given sample, but
n = 3 seems to work well in most cases. These parts are then numbered and linked
together with unique name of the literal. For the unique naming a hash map is
constructed with mapping name→ id. Finally all parts are saved into a hash set.

Searching for some concrete literal is analogical to saving a literal, described in
the paragraph above. The literal is divided into n numbered parts and all parts
are checked if they are in the database. The searching is done for every id from
possible ids in the hash map for given literal name.

Example 5.3.1.
Let’s have an sample where literal p(a,b, c,d, e, f) is presented. We will save
chunks depicted in Table 5.1 into hash set instead of all combinations of original
literal.

Number of all combinations for given literal can be computed as
(
6
0

)
+
(
6
1

)
+ · · ·+(

6
6

)
= 64. But if we divide this literal into 2 parts, then the number of saved items

is 2 ·
((
3
0

)
+
(
3
1

)
+
(
3
2

)
+
(
3
3

))
= 16. A space complexity reduction is substantial and

all possible combinations with ∗ are findable in a fast way with nothing like com-
binatorial explosion. This is particularly useful when forward checking algorithm
asks if it should continue in variables binding with some already fixed variables.
Forward checking algorithm for our model will be mentioned later (Section 5.3.5).

5.3 effective implementation details 53

1st part 2nd part

p1(1,a,b, c) p1(2,d, e, f)
p1(1, ∗,b, c) p1(2, ∗, e, f)
p1(1,a, ∗, c) p1(2,d, ∗, f)
p1(1,a,b, ∗) p1(2,d, e, ∗)
p1(1, ∗, ∗, c) p1(2, ∗, ∗, f)
p1(1, ∗,b, ∗) p1(2, ∗, e, ∗)
p1(1,a, ∗, ∗) p1(2,d, ∗, ∗)
p1(1, ∗, ∗, ∗) p1(2, ∗, ∗, ∗)

Table 5.1: Partitioned literal p(a,b, c,d, e, f). All parts are saved in one hash set. An id for
literal p is here p1. If another literal with the same name would be added then
it will have id p2 etc. When searching for given literal p then all ids have to be
processed.

5.3.4 Variable Ordering

As we have already said in Section 2.2.5 (Variable Ordering), a smart variable
ordering can bring benefits in the form of speeding up a combinatorial algorithm.
We chose simple algorithm inspired by Kuželka [23] for picking which variable
should be grounded in every round.

1. Compute a score for each not bound variable in a given clause. This score
expresses a number, how many variables are bound in shared literals. I. e., for
all literals, where the computed variable presents, count all already bound
variables. This is the score of the variable.

2. Select a variable with the highest score. If more variables have equal score
then the one is picked uniformly.

This in fact means, that the most constraint variable is picked, thus the highest
chance to fail early if we are not in the feasible branch, which is convenient as we
mentioned earlier.

5.3.5 Forward Checking

A naive algorithm tests, whether a substitution succeeds after it binds all vari-
ables in all clauses recursively and the input layer with literals from λκ-sample are
checked. This can lead to exploration of search-space, which cannot be feasible,
because of one bad early bound variable. All bounds after this bad bound can-

5.3 effective implementation details 54

not finish with success. E. g., if the first variable in some literal from λκ-sample
is bound to a value and a literal with this value does not occur in the λκ-sample,
then all other bindings are useless.

It is good to figure out, whether we bound a bad value immediately. Thus we do
following check.

• After each bound, do a recursively check, if the partial query can succeed.
This performs a partial query to the structure, which contains sample repre-
sentation from previous section. If check fails, then we bind another value.

Here we see, why it was useful to create a data structure for effective partial
queries. A sample of such query is p(a, ∗, ∗). If we figure out that no such lit-
eral exists, we refuse this binding.

Forward checking results can be saved in a cache very well for later usage. Thus,
if we figure out that literal p(a, ∗, ∗) failed or succeeded we save it. Next identical
check need not to be computed again.

5.3.6 Branch and Bound

When finding a maximal substitution in the clause, we can use BB for skipping
bindings, which cannot get better score.

• Lower bound (l) for given clause is the best computed value so far, or −∞ if
no computation was done.

• Upper bound (u) is computed as

u =
∑

literal∈computed

literal+
∑
literal∈not computed

estimate(literal)

λ←
u︷ ︸︸ ︷

κ1, κ2, κ3︸ ︷︷ ︸
Bound
Exact

, κ4, κ5︸ ︷︷ ︸
Unbound
Estimate

(5.1)

where:

• The first sum is summing up the values of these literals, which are fully
grounded and the output value is known.

• The second sum is summing up estimation for those literals, which are not
fully grounded. This estimation has to overestimate the real value for keep-
ing correctness because of pruning if l > u. An implementation of our algo-
rithm has very simple estimation function, which sets an estimation of each
literal to 1.

5.3 effective implementation details 55

Biggest advantage of this really simple approach is its computational complexity,
which outweighs more complex solutions in final. A schematic equation for three
fully bound literals is in Equation (5.1).

5.3.7 Caching

When solving a maximal substitution, many computations can be performed re-
peatedly, because of the same grounded literal can occur in various clauses. Thus
remembering already computed values for grounded literal is convenient. For this
purpose, we have used a weak hash map, a very suitable data structure with au-
tomatic memory management. I. e., items from weak hash maps are automatically
deleted whether a memory is running low. Usage of cache is shown in Listing 5.1
in a general way. Caching is not only useful for computing output values of liter-
als, but already for results from forward checking or during the backpropagation
algorithm.

procedure cached_solve(problem)

if problem ’ s output is in cache
return problem ’s output

else

perform computation

save result to cache

return problem ’ s output

Listing 5.1: Caching Results

6 E X P E R I M E N T S

In this chapter, we are describing experiments with the proposed algorithm. It will
be presented on datasets Mutagenesis (Lodhi and Muggleton [27]) and Predictive
Toxicology Challenge (Helma et al. [15]).

• Mutagenesis dataset contains descriptions of 188 molecules labelled accord-
ing to their mutagenicity.

• Predictive Toxicology Challenge dataset contains four datasets with labelled
molecules according to their toxicity to female mice, male mice, female rats
and male rats. We tested male rats as the most difficult dataset.

Results will be compared to state-of-the-art relational learning algorithms taken
from Kuželka et al. [22], where the accuracies were estimated by 10-fold cross-
validation. The state-of-the-art relational learners are:

• nFOIL (Landwehr et al. [25]), combining FOIL’s (Quinlan and Cameron-Jones
[39]) top-down approach for hypothesis search and Naive Bayes classifier.

• A novel bottom-up method based on Plotkin’s least general generalization
operator denoted as Bottom by Kuželka et al. [22].

6.1 λκ-programs

λκ-programs for both datasets are in Listings 6.1 to 6.3. Notice that upper layers
of λκ-programs are the same for both datasets.

2 bottom layers for each dataset are in Listing 6.1 (Listing 6.3). They contain bind-
ings to the literals from samples and their propagation to higher layer with learn-
able weights. Note that already here, in bottom layers, fuzziness of our method
appears and continues to upper layers.

56

6.1 λκ-programs 57

atomLambda1 (X) :− o (X) . atomLambda2 (X) :− n (X) . atomLambda3 (X) :− f (X) .
atomLambda4 (X) :− p (X) . atomLambda5 (X) :− sn (X) . atomLambda6 (X) :− br (X) .
atomLambda7 (X) :− cu (X) . atomLambda8 (X) :− c (X) . atomLambda9 (X) :− k (X) .
atomLambda10 (X) :− c l (X) . atomLambda11 (X) :− i (X) . atomLambda12 (X) :− na (X) .
atomLambda13 (X) :− ca (X) . atomLambda14 (X) :− in (X) . atomLambda15 (X) :− h (X) .
atomLambda16 (X) :− zn (X) . atomLambda17 (X) :− pb (X) . atomLambda18 (X) :− s (X) .
atomLambda19 (X) :− ba (X) .

bondLambda1 (X) :− 2 (X) . bondLambda2 (X) :− 3 (X) . bondLambda3 (X) :− 7 (X) .
bondLambda4 (X) :− 1 (X) .

0 . 0 bondKappa1 (X) :− bondLambda1 (X) . 0 . 0 bondKappa1 (X) :− bondLambda2 (X) . 0 . 0 bondKappa1 (X) :− bondLambda3 (X) .
0 . 0 bondKappa1 (X) :− bondLambda4 (X) . 0 . 0 bondKappa2 (X) :− bondLambda1 (X) . 0 . 0 bondKappa2 (X) :− bondLambda2 (X) .
0 . 0 bondKappa2 (X) :− bondLambda3 (X) . 0 . 0 bondKappa2 (X) :− bondLambda4 (X) . 0 . 0 bondKappa3 (X) :− bondLambda1 (X) .
0 . 0 bondKappa3 (X) :− bondLambda2 (X) . 0 . 0 bondKappa3 (X) :− bondLambda3 (X) . 0 . 0 bondKappa3 (X) :− bondLambda4 (X) .

0 . 0 atomKappa1 (X) :− atomLambda1 (X) . 0 . 0 atomKappa1 (X) :− atomLambda2 (X) . 0 . 0 atomKappa1 (X) :− atomLambda3 (X) .
0 . 0 atomKappa1 (X) :− atomLambda4 (X) . 0 . 0 atomKappa1 (X) :− atomLambda5 (X) . 0 . 0 atomKappa1 (X) :− atomLambda6 (X) .
0 . 0 atomKappa1 (X) :− atomLambda7 (X) . 0 . 0 atomKappa1 (X) :− atomLambda8 (X) . 0 . 0 atomKappa1 (X) :− atomLambda9 (X) .
0 . 0 atomKappa1 (X) :− atomLambda10 (X) . 0 . 0 atomKappa1 (X) :− atomLambda11 (X) . 0 . 0 atomKappa1 (X) :− atomLambda12 (X) .
0 . 0 atomKappa1 (X) :− atomLambda13 (X) . 0 . 0 atomKappa1 (X) :− atomLambda14 (X) . 0 . 0 atomKappa1 (X) :− atomLambda15 (X) .
0 . 0 atomKappa1 (X) :− atomLambda16 (X) . 0 . 0 atomKappa1 (X) :− atomLambda17 (X) . 0 . 0 atomKappa1 (X) :− atomLambda18 (X) .
0 . 0 atomKappa1 (X) :− atomLambda19 (X) . 0 . 0 atomKappa2 (X) :− atomLambda1 (X) . 0 . 0 atomKappa2 (X) :− atomLambda2 (X) .
0 . 0 atomKappa2 (X) :− atomLambda3 (X) . 0 . 0 atomKappa2 (X) :− atomLambda4 (X) . 0 . 0 atomKappa2 (X) :− atomLambda5 (X) .
0 . 0 atomKappa2 (X) :− atomLambda6 (X) . 0 . 0 atomKappa2 (X) :− atomLambda7 (X) . 0 . 0 atomKappa2 (X) :− atomLambda8 (X) .
0 . 0 atomKappa2 (X) :− atomLambda9 (X) . 0 . 0 atomKappa2 (X) :− atomLambda10 (X) . 0 . 0 atomKappa2 (X) :− atomLambda11 (X) .
0 . 0 atomKappa2 (X) :− atomLambda12 (X) . 0 . 0 atomKappa2 (X) :− atomLambda13 (X) . 0 . 0 atomKappa2 (X) :− atomLambda14 (X) .
0 . 0 atomKappa2 (X) :− atomLambda15 (X) . 0 . 0 atomKappa2 (X) :− atomLambda16 (X) . 0 . 0 atomKappa2 (X) :− atomLambda17 (X) .
0 . 0 atomKappa2 (X) :− atomLambda18 (X) . 0 . 0 atomKappa2 (X) :− atomLambda19 (X) . 0 . 0 atomKappa3 (X) :− atomLambda1 (X) .
0 . 0 atomKappa3 (X) :− atomLambda2 (X) . 0 . 0 atomKappa3 (X) :− atomLambda3 (X) . 0 . 0 atomKappa3 (X) :− atomLambda4 (X) .
0 . 0 atomKappa3 (X) :− atomLambda5 (X) . 0 . 0 atomKappa3 (X) :− atomLambda6 (X) . 0 . 0 atomKappa3 (X) :− atomLambda7 (X) .
0 . 0 atomKappa3 (X) :− atomLambda8 (X) . 0 . 0 atomKappa3 (X) :− atomLambda9 (X) . 0 . 0 atomKappa3 (X) :− atomLambda10 (X) .
0 . 0 atomKappa3 (X) :− atomLambda11 (X) . 0 . 0 atomKappa3 (X) :− atomLambda12 (X) . 0 . 0 atomKappa3 (X) :− atomLambda13 (X) .
0 . 0 atomKappa3 (X) :− atomLambda14 (X) . 0 . 0 atomKappa3 (X) :− atomLambda15 (X) . 0 . 0 atomKappa3 (X) :− atomLambda16 (X) .
0 . 0 atomKappa3 (X) :− atomLambda17 (X) . 0 . 0 atomKappa3 (X) :− atomLambda18 (X) . 0 . 0 atomKappa3 (X) :− atomLambda19 (X) .

Listing 6.1: PTC-MR Bottom Layers

lambda0 :− atomKappa1 (X) , bond (X , Y , B1) , bondKappa1 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa1 (B2) , atomKappa1 (Z) .
lambda1 :− atomKappa1 (X) , bond (X , Y , B1) , bondKappa1 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa2 (B2) , atomKappa1 (Z) .
lambda2 :− atomKappa1 (X) , bond (X , Y , B1) , bondKappa1 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa3 (B2) , atomKappa1 (Z) .
lambda3 :− atomKappa1 (X) , bond (X , Y , B1) , bondKappa2 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa1 (B2) , atomKappa1 (Z) .

.

.

.
lambda6 :− atomKappa1 (X) , bond (X , Y , B1) , bondKappa3 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa1 (B2) , atomKappa1 (Z) .

.

.

.
lambda9 :− atomKappa1 (X) , bond (X , Y , B1) , bondKappa1 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa1 (B2) , atomKappa2 (Z) .
lambda10 :− atomKappa1 (X) , bond (X , Y , B1) , bondKappa1 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa2 (B2) , atomKappa2 (Z) .

.

.

.
lambda100 :− atomKappa2 (X) , bond (X , Y , B1) , bondKappa1 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa2 (B2) , atomKappa3 (Z) .
lambda101 :− atomKappa2 (X) , bond (X , Y , B1) , bondKappa1 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa3 (B2) , atomKappa3 (Z) .
lambda102 :− atomKappa2 (X) , bond (X , Y , B1) , bondKappa2 (B1) , atomKappa1 (Y) , bond (Y , Z , B2) , bondKappa1 (B2) , atomKappa3 (Z) .

.

.

.
lambda220 :− atomKappa3 (X) , bond (X , Y , B1) , bondKappa2 (B1) , atomKappa3 (Y) , bond (Y , Z , B2) , bondKappa2 (B2) , atomKappa1 (Z) .

.

.

.
lambda242 :− atomKappa3 (X) , bond (X , Y , B1) , bondKappa3 (B1) , atomKappa3 (Y) , bond (Y , Z , B2) , bondKappa3 (B2) , atomKappa3 (Z) .

0 . 0 f inalKappa :− lambda0 .
0 . 0 f inalKappa :− lambda1 .

.

.

.
0 . 0 f inalKappa :− lambda242 .

Listing 6.2: Common Upper Layers

6.1 λκ-programs 58

atomLambda1 (X) :− c28 (X) . atomLambda2 (X) :− c14 (X) . atomLambda3 (X) :− c16 (X) .
atomLambda4 (X) :− n31 (X) . atomLambda5 (X) :− o40 (X) . atomLambda6 (X) :− i 9 5 (X) .
atomLambda7 (X) :− o51 (X) . atomLambda8 (X) :− c25 (X) . atomLambda9 (X) :− n36 (X) .
atomLambda10 (X) :− c21 (X) . atomLambda11 (X) :− c l 9 3 (X) . atomLambda12 (X) :− n34 (X) .
atomLambda13 (X) :− o52 (X) . atomLambda14 (X) :− o41 (X) . atomLambda15 (X) :− br94 (X) .
atomLambda16 (X) :− c194 (X) . atomLambda17 (X) :− n35 (X) . atomLambda18 (X) :− o49 (X) .
atomLambda19 (X) :− c29 (X) . atomLambda20 (X) :− o45 (X) . atomLambda21 (X) :− n32 (X) .
atomLambda22 (X) :− c27 (X) . atomLambda23 (X) :− f92 (X) . atomLambda24 (X) :− c19 (X) .
atomLambda25 (X) :− n38 (X) . atomLambda26 (X) :− h8 (X) . atomLambda27 (X) :− c232 (X) .
atomLambda28 (X) :− c22 (X) . atomLambda29 (X) :− o42 (X) . atomLambda30 (X) :− c230 (X) .
atomLambda31 (X) :− h3 (X) . atomLambda32 (X) :− c26 (X) . atomLambda33 (X) :− c10 (X) .
atomLambda34 (X) :− c195 (X) . atomLambda35 (X) :− h1 (X) . atomLambda36 (X) :− o50 (X) .

bondLambda1 (X) :− 2 (X) . bondLambda2 (X) :− 3 (X) . bondLambda3 (X) :− 7 (X) .
bondLambda4 (X) :− 1 (X) . bondLambda5 (X) :− 4 (X) . bondLambda6 (X) :− 5 (X) .

0 . 0 bondKappa1 (X) :− bondLambda1 (X) . 0 . 0 bondKappa1 (X) :− bondLambda2 (X) . 0 . 0 bondKappa1 (X) :− bondLambda3 (X) .
0 . 0 bondKappa1 (X) :− bondLambda4 (X) . 0 . 0 bondKappa1 (X) :− bondLambda5 (X) . 0 . 0 bondKappa1 (X) :− bondLambda6 (X) .
0 . 0 bondKappa2 (X) :− bondLambda1 (X) . 0 . 0 bondKappa2 (X) :− bondLambda2 (X) . 0 . 0 bondKappa2 (X) :− bondLambda3 (X) .
0 . 0 bondKappa2 (X) :− bondLambda4 (X) . 0 . 0 bondKappa2 (X) :− bondLambda5 (X) . 0 . 0 bondKappa2 (X) :− bondLambda6 (X) .
0 . 0 bondKappa3 (X) :− bondLambda1 (X) . 0 . 0 bondKappa3 (X) :− bondLambda2 (X) . 0 . 0 bondKappa3 (X) :− bondLambda3 (X) .
0 . 0 bondKappa3 (X) :− bondLambda4 (X) . 0 . 0 bondKappa3 (X) :− bondLambda5 (X) . 0 . 0 bondKappa3 (X) :− bondLambda6 (X) .

0 . 0 atomKappa1 (X) :− atomLambda1 (X) . 0 . 0 atomKappa1 (X) :− atomLambda2 (X) . 0 . 0 atomKappa1 (X) :− atomLambda3 (X) .
0 . 0 atomKappa1 (X) :− atomLambda4 (X) . 0 . 0 atomKappa1 (X) :− atomLambda5 (X) . 0 . 0 atomKappa1 (X) :− atomLambda6 (X) .
0 . 0 atomKappa1 (X) :− atomLambda7 (X) . 0 . 0 atomKappa1 (X) :− atomLambda8 (X) . 0 . 0 atomKappa1 (X) :− atomLambda9 (X) .
0 . 0 atomKappa1 (X) :− atomLambda10 (X) . 0 . 0 atomKappa1 (X) :− atomLambda11 (X) . 0 . 0 atomKappa1 (X) :− atomLambda12 (X) .
0 . 0 atomKappa1 (X) :− atomLambda13 (X) . 0 . 0 atomKappa1 (X) :− atomLambda14 (X) . 0 . 0 atomKappa1 (X) :− atomLambda15 (X) .
0 . 0 atomKappa1 (X) :− atomLambda16 (X) . 0 . 0 atomKappa1 (X) :− atomLambda17 (X) . 0 . 0 atomKappa1 (X) :− atomLambda18 (X) .
0 . 0 atomKappa1 (X) :− atomLambda19 (X) . 0 . 0 atomKappa1 (X) :− atomLambda20 (X) . 0 . 0 atomKappa1 (X) :− atomLambda21 (X) .
0 . 0 atomKappa1 (X) :− atomLambda22 (X) . 0 . 0 atomKappa1 (X) :− atomLambda23 (X) . 0 . 0 atomKappa1 (X) :− atomLambda24 (X) .
0 . 0 atomKappa1 (X) :− atomLambda25 (X) . 0 . 0 atomKappa1 (X) :− atomLambda26 (X) . 0 . 0 atomKappa1 (X) :− atomLambda27 (X) .
0 . 0 atomKappa1 (X) :− atomLambda28 (X) . 0 . 0 atomKappa1 (X) :− atomLambda29 (X) . 0 . 0 atomKappa1 (X) :− atomLambda30 (X) .
0 . 0 atomKappa1 (X) :− atomLambda31 (X) . 0 . 0 atomKappa1 (X) :− atomLambda32 (X) . 0 . 0 atomKappa1 (X) :− atomLambda33 (X) .
0 . 0 atomKappa1 (X) :− atomLambda34 (X) . 0 . 0 atomKappa1 (X) :− atomLambda35 (X) . 0 . 0 atomKappa1 (X) :− atomLambda36 (X) .
0 . 0 atomKappa2 (X) :− atomLambda1 (X) . 0 . 0 atomKappa2 (X) :− atomLambda2 (X) . 0 . 0 atomKappa2 (X) :− atomLambda3 (X) .
0 . 0 atomKappa2 (X) :− atomLambda4 (X) . 0 . 0 atomKappa2 (X) :− atomLambda5 (X) . 0 . 0 atomKappa2 (X) :− atomLambda6 (X) .
0 . 0 atomKappa2 (X) :− atomLambda7 (X) . 0 . 0 atomKappa2 (X) :− atomLambda8 (X) . 0 . 0 atomKappa2 (X) :− atomLambda9 (X) .
0 . 0 atomKappa2 (X) :− atomLambda10 (X) . 0 . 0 atomKappa2 (X) :− atomLambda11 (X) . 0 . 0 atomKappa2 (X) :− atomLambda12 (X) .
0 . 0 atomKappa2 (X) :− atomLambda13 (X) . 0 . 0 atomKappa2 (X) :− atomLambda14 (X) . 0 . 0 atomKappa2 (X) :− atomLambda15 (X) .
0 . 0 atomKappa2 (X) :− atomLambda16 (X) . 0 . 0 atomKappa2 (X) :− atomLambda17 (X) . 0 . 0 atomKappa2 (X) :− atomLambda18 (X) .
0 . 0 atomKappa2 (X) :− atomLambda19 (X) . 0 . 0 atomKappa2 (X) :− atomLambda20 (X) . 0 . 0 atomKappa2 (X) :− atomLambda21 (X) .
0 . 0 atomKappa2 (X) :− atomLambda22 (X) . 0 . 0 atomKappa2 (X) :− atomLambda23 (X) . 0 . 0 atomKappa2 (X) :− atomLambda24 (X) .
0 . 0 atomKappa2 (X) :− atomLambda25 (X) . 0 . 0 atomKappa2 (X) :− atomLambda26 (X) . 0 . 0 atomKappa2 (X) :− atomLambda27 (X) .
0 . 0 atomKappa2 (X) :− atomLambda28 (X) . 0 . 0 atomKappa2 (X) :− atomLambda29 (X) . 0 . 0 atomKappa2 (X) :− atomLambda30 (X) .
0 . 0 atomKappa2 (X) :− atomLambda31 (X) . 0 . 0 atomKappa2 (X) :− atomLambda32 (X) . 0 . 0 atomKappa2 (X) :− atomLambda33 (X) .
0 . 0 atomKappa2 (X) :− atomLambda34 (X) . 0 . 0 atomKappa2 (X) :− atomLambda35 (X) . 0 . 0 atomKappa2 (X) :− atomLambda36 (X) .
0 . 0 atomKappa3 (X) :− atomLambda1 (X) . 0 . 0 atomKappa3 (X) :− atomLambda2 (X) . 0 . 0 atomKappa3 (X) :− atomLambda3 (X) .
0 . 0 atomKappa3 (X) :− atomLambda4 (X) . 0 . 0 atomKappa3 (X) :− atomLambda5 (X) . 0 . 0 atomKappa3 (X) :− atomLambda6 (X) .
0 . 0 atomKappa3 (X) :− atomLambda7 (X) . 0 . 0 atomKappa3 (X) :− atomLambda8 (X) . 0 . 0 atomKappa3 (X) :− atomLambda9 (X) .
0 . 0 atomKappa3 (X) :− atomLambda10 (X) . 0 . 0 atomKappa3 (X) :− atomLambda11 (X) . 0 . 0 atomKappa3 (X) :− atomLambda12 (X) .
0 . 0 atomKappa3 (X) :− atomLambda13 (X) . 0 . 0 atomKappa3 (X) :− atomLambda14 (X) . 0 . 0 atomKappa3 (X) :− atomLambda15 (X) .
0 . 0 atomKappa3 (X) :− atomLambda16 (X) . 0 . 0 atomKappa3 (X) :− atomLambda17 (X) . 0 . 0 atomKappa3 (X) :− atomLambda18 (X) .
0 . 0 atomKappa3 (X) :− atomLambda19 (X) . 0 . 0 atomKappa3 (X) :− atomLambda20 (X) . 0 . 0 atomKappa3 (X) :− atomLambda21 (X) .
0 . 0 atomKappa3 (X) :− atomLambda22 (X) . 0 . 0 atomKappa3 (X) :− atomLambda23 (X) . 0 . 0 atomKappa3 (X) :− atomLambda24 (X) .
0 . 0 atomKappa3 (X) :− atomLambda25 (X) . 0 . 0 atomKappa3 (X) :− atomLambda26 (X) . 0 . 0 atomKappa3 (X) :− atomLambda27 (X) .
0 . 0 atomKappa3 (X) :− atomLambda28 (X) . 0 . 0 atomKappa3 (X) :− atomLambda29 (X) . 0 . 0 atomKappa3 (X) :− atomLambda30 (X) .
0 . 0 atomKappa3 (X) :− atomLambda31 (X) . 0 . 0 atomKappa3 (X) :− atomLambda32 (X) . 0 . 0 atomKappa3 (X) :− atomLambda33 (X) .
0 . 0 atomKappa3 (X) :− atomLambda34 (X) . 0 . 0 atomKappa3 (X) :− atomLambda35 (X) . 0 . 0 atomKappa3 (X) :− atomLambda36 (X) .

Listing 6.3: Mutagenesis Bottom Layers

6.2 learning analysis 59

6.2 learning analysis

During learning the network, we measured the learning error as well as a value
called dispersion. Dispersion is the difference in the output of two training sam-
ples: one with the highest output and one with the lowest output. Figure 6.1 shows
how dispersion changes during the learning algorithm and one can see, that our
model separates the training samples more and more during the learning phase.
This confirms the ability to learn. Figure 6.2 shows the learning error for the learn-
ing phase with 30 learning cycles. Notice the coherence between low learning error
and high dispersion.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of learning cycles

D
is

pe
rs

io
n

Figure 6.1: Dispersion for randomly se-
lected experiment. The
graph shows the difference
between outputs of two sam-
ples: a sample with the
highest output and a sam-
ple with the lowest output.
The values are measured
when a new maximal substi-
tution for given λκ-template
is found.

0 5 10 15 20 25 30
0.34

0.36

0.38

0.4

0.42

0.44

0.46

Number of learning cycles

Le
ar

ni
ng

 e
rr

or

Figure 6.2: Learning error for randomly
selected experiment. The
graph shows the learning er-
ror. The values are measured
when a new maximal substi-
tution for given λκ-template
is found.

6.3 results

The settings of experiments are in Table 6.1. Learning cycles denotes the number
of accomplished maximal substitutions. During one learning cycle, several runs of

6.3 results 60

the modified backpropagation algorithm are executed. This number is expressed
by Learning steps value. Atom kappas (Bond kappas) denotes the number of generated
κ-literals for literals with predicate symbols atom (bond) in a hidden layer (H2 in
these 5-layered λκ-programs). These two parameters have a big impact on the
generated n-layered λκ-program size (see examples of λκ-programs). Setting Initial
weights was done in a random way, we set 90% of weights to 0.1 and the remaining
10% to 0.9. Learning rate was experimentally tuned to 0.02.

Each experiment was started 10 times and the final value is computed as a median
of these runs. The median is shown in Table 6.2 and compared with results from
Kuželka et al. [22]. Box plots of results are depicted in Figures 6.3 and 6.4.

Learning cycles 30

Learning steps 50

Atom kappas 3

Bond kappas 3

Initial weights 0.1[90%]

0.9[10%]

Learning rate 0.02

Table 6.1: Parameters of Algorithm

PTC-MR Muta

λκ-prg 59.6 75.0
nFoil 57.3 76.6
Bottom 62.2 78.9

Table 6.2: Accuracies

0.57

0.58

0.59

0.6

0.61

0.62

0.63

A
c
c
u
ra

c
y

Figure 6.3: PTC-MR Accuracy

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

A
c
c
u

ra
c
y

Figure 6.4: Mutagenesis Accuracy

7 C O N C L U S I O N A N D F U T U R E W O R K

7.1 conclusion

The main motivation of this thesis was to develop an algorithm for ILP, that would
use fuzziness more than approaches used so far e. g., propositionalization with
linear classifier. The algorithm will be able to learn helpful non-crisp concepts,
which we call call a predicate invention, because it can be used for definition of
other concepts or final hypothesis.

We proposed a novel machine learning model, introduced theoretical foundations
of this model, implemented a learning and classification algorithms and experi-
mentally evaluated the accuracy of this model.

The theoretical part of this thesis dealt with setting theoretical foundations of the
new model. We proposed a new language called n-layered λκ-program. It ex-
tends Datalog with weighted disjunctions and introduces constraints on its clauses.
Thanks to these constraints, we could transform an n-layered λκ-program to an
n-layered λκ-template. It represents the n-layered λκ-program as a weighted di-
rected graph with nodes extended with function similar to an artificial neuron.
After grounding the n-layered λκ-template with maximal substitution, we got an
n-layered λκ-network. The output of the n-layered λκ-network we can compute.
Based on these graph representations we developed a learning algorithm inter-
leaving the logical part (maximal substitution) and the continuous part (modified
backpropagation). Also a classification algorithm based on the output of the n-
layered λκ-network (holding maximal substitution property) was proposed.

The implementation part has focused on an effective implementation of the model.
During the implementation, we had to build an effective n-layered λκ-program
reasoner from scratch. We had to integrate techniques such as forward check-
ing, variable ordering, branch and bound, literal partitioning, emulated dynamic
programming with caching etc. The scalability of the reasoner was crucial for
performing experiments on real data. Moreover, the learning and classification
algorithms were implemented.

The experiments were performed on two classical ILP datasets with satisfactory
results. At one dataset (PTC-MR), our model beats the state-of-the art relational

61

7.2 future work 62

learner nFOIL but was not good enough to beat novel method called Bottom. The
second dataset (Mutagenesis) ends with worse results.

Considering the novelty of our approach, which means that many fine-tunings and
other optimization will be done in the future, we can consider our work a success-
ful foundation of new learning algorithm with a big potential for extensions, other
improvements or even modifications during future research.

7.2 future work

As we have already said, the work on the proposed model does not end with this
thesis. It will be further fine-tuned, modified and extended. Here, we provide
some recent ideas for extensions.

structure learning
The highest potential performance boost can be achieved by adding the structure
learning ability. It means, that clauses for n-layered λκ-program will not be gen-
erated for all combinations of literals, like so far, but will be chosen in a more
sophisticated way. We can use existing tools for mining patterns from data and
compose layers with their help.

λ-clauses weights
In the proposed model, we kept λ-clause weights at 1. Another possibility is to
make λ-clauses weights learnable. This will make the learning process slower but
it can also bring some accuracy improvements.

B I B L I O G R A P H Y

[1] C.R. Anderson, P. Domingos, and D.S. Weld. Relational markov models and
their application to adaptive web navigation. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
143–152. ACM, 2002. (Cited on page 2.)

[2] F. Bacchus and P. Van Beek. On the conversion between non-binary and bi-
nary constraint satisfaction problems. In PROCEEDINGS OF THE NATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE, pages 311–318. JOHN WI-
LEY & SONS LTD, 1998. (Cited on page 12.)

[3] L. Baptista and J. Marques-Silva. Using randomization and learning to solve
hard real-world instances of satisfiability. Principles and Practice of Constraint
Programming–CP 2000, pages 489–494, 2000. (Cited on page 18.)

[4] Roman Barták. On-line guide to constraint programming, 10 2012. URL http:

//ktiml.mff.cuni.cz/~bartak/constraints. (Cited on page 11.)

[5] K.L. Clark. Negation as failure. Logic and data bases, 1:293–322, 1978. (Cited
on page 6.)

[6] J. Clausen. Branch and bound algorithms-principles and examples. 1999.
(Cited on page 16.)

[7] J. Cussens. Loglinear models for first-order probabilistic reasoning. In Pro-
ceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pages
126–133. Morgan Kaufmann Publishers Inc., 1999. (Cited on page 2.)

[8] J. Demel. Graphs and their applications. Czech, Academia Praha, 2002. (Cited
on page 16.)

[9] P. Domingos, S. Kok, H. Poon, M. Richardson, and P. Singla. Unifying log-
ical and statistical ai. In Proceedings of the Twenty-First National Conference on
Artificial Intelligence, pages 2–7, 2006. (Cited on page 2.)

[10] D. DuBois and H.M. Prade. Fuzzy sets and systems: theory and applications,
volume 144. Academic Pr, 1980. (Cited on page 21.)

[11] P.A. Flach. Simply logical: intelligent reasoning by example. John Wiley & Sons,
Inc., 1994. (Cited on page 32.)

63

http://ktiml.mff.cuni.cz/~bartak/constraints
http://ktiml.mff.cuni.cz/~bartak/constraints

bibliography 64

[12] L. Getoor, N. Friedman, D. Koller, and A. Pfeer. 1. learning probabilistic
relational models. Relational data mining, page 307, 2001. (Cited on page 2.)

[13] R. Giles. Łukasiewicz logic and fuzzy set theory. International Journal of Man-
Machine Studies, 8(3):313–327, 1976. (Cited on page 22.)

[14] A. Giordana and L. Saitta. P„hase transitions in relational learning. Machine
Learning, 41(2):217–251, 2000. (Cited on page 25.)

[15] C. Helma, R.D. King, S. Kramer, and A. Srinivasan. The predictive toxicology
challenge 2000–2001. Bioinformatics, 17(1):107–108, 2001. (Cited on page 56.)

[16] IRIS Development Team. IRIS: Integrated Rule Inference System. IRIS Founda-
tions, 2010. URL http://www.iris-reasoner.org. (Cited on page 24.)

[17] D. Kapur and P. Narendran. Np-completeness of the set unification and
matching problems. In 8th International Conference on Automated Deduction,
pages 489–495. Springer, 1986. (Cited on page 7.)

[18] K. Kersting and L. De Raedt. Towards combining inductive logic program-
ming with bayesian networks. Inductive Logic Programming, pages 118–131,
2001. (Cited on page 2.)

[19] G.J. Klir and B. Yuan. Fuzzy sets and fuzzy logic. Prentice Hall New Jersey, 1995.
(Cited on page 21.)

[20] D.E. Knuth. Computer Programming as an Art. Communications of the ACM,
17(12):667–673, December 1974. (Cited on page iv.)

[21] O. Kuželka and F. Železný. A restarted strategy for efficient subsumption test-
ing. Fundamenta Informaticae, 89(1):95–109, 2008. (Cited on pages 11 and 25.)

[22] O. Kuželka, A. Szabóová, and F. Železný. Bounded least general generaliza-
tion. Unpublished article, 2012. (Cited on pages 56 and 60.)

[23] Ondřej Kuželka. Efficient construction of relational features for machine learn-
ing. Master’s thesis, Czech Technical University in Prague, 2009. (Cited on
page 53.)

[24] M.S. Lam, J. Whaley, V.B. Livshits, M.C. Martin, D. Avots, M. Carbin, and
C. Unkel. Context-sensitive program analysis as database queries. In Proceed-
ings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pages 1–12. ACM, 2005. (Cited on page 24.)

[25] N. Landwehr, K. Kersting, and L.D. Raedt. Integrating naive bayes and foil.
The Journal of Machine Learning Research, 8:481–507, 2007. (Cited on page 56.)

http://www.iris-reasoner.org

bibliography 65

[26] N. Lavrac and S. Dzeroski. Inductive logic programming. E. Horwood, 1994.
(Cited on pages 2, 8, and 9.)

[27] H. Lodhi and S. Muggleton. Is mutagenesis still challenging. ILP-Late-Breaking
Papers, 35, 2005. (Cited on page 56.)

[28] J. Maloberti and M. Sebag. Fast theta-subsumption with constraint satisfaction
algorithms. Machine Learning, 55(2):137–174, 2004. (Cited on page 25.)

[29] S. Muggleton. Inductive logic programming. New generation computing, 8(4):
295–318, 1991. (Cited on page 8.)

[30] S. Muggleton et al. Stochastic logic programs. Advances in inductive logic
programming, 32:254–264, 1996. (Cited on page 2.)

[31] J. Neville and D. Jensen. Collective classification with relational dependency
networks. In Proceedings of the Second International Workshop on Multi-Relational
Data Mining, pages 77–91. Citeseer, 2003. (Cited on page 2.)

[32] L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilis-
tic knowledge bases. Theoretical Computer Science, 171(1):147–177, 1997. (Cited
on page 2.)

[33] A. Paes, F. Železnỳ, G. Zaverucha, D. Page, and A. Srinivasan. Ilp through
propositionalization and stochastic k-term dnf learning. Inductive Logic Pro-
gramming, pages 379–393, 2007. (Cited on page 2.)

[34] G.D. Plotkin. A further note on inductive generalization. Machine intelligence,
6(101-124), 1971. (Cited on page 7.)

[35] D. Poole. Logic, probability and computation: Foundations and issues of
statistical relational ai. Logic Programming and Nonmonotonic Reasoning, pages
1–9, 2011. (Cited on page 1.)

[36] D.L. Poole and A.K. Mackworth. Artificial Intelligence: foundations of computa-
tional agents. Cambridge University Press, 2010. (Cited on page 1.)

[37] A. Popescul and L.H. Ungar. Structural logistic regression for link analysis.
Departmental Papers (CIS), page 133, 2003. (Cited on page 2.)

[38] pyDatalog Development Team. pyDatalog: Datalog Programming in Python,
2012. URL https://sites.google.com/site/pydatalog/home. (Cited on
page 24.)

[39] J. Quinlan and R. Cameron-Jones. Foil: A midterm report. In Machine Learning:
ECML-93, pages 1–20. Springer, 1993. (Cited on page 56.)

https://sites.google.com/site/pydatalog/home

bibliography 66

[40] M. Riedmiller. Advanced supervised learning in multi-layer percep-
trons—from backpropagation to adaptive learning algorithms. Computer Stan-
dards & Interfaces, 16(3):265–278, 1994. (Cited on page 20.)

[41] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropa-
gation learning: The rprop algorithm. In Neural Networks, 1993., IEEE Interna-
tional Conference on, pages 586–591. IEEE, 1993. (Cited on page 20.)

[42] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction
problems. In Proceedings of the 9th European Conference on Artificial Intelligence,
pages 550–556, 1990. (Cited on page 12.)

[43] S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, and D.D. Edwards. Artificial
intelligence: a modern approach, volume 2. Prentice hall Englewood Cliffs, NJ,
1995. (Cited on page 21.)

[44] J. Santos and S. Muggleton. Subsumer: A Prolog theta-subsumption engine.
In Technical communications of the 26th Int. Conference on Logic Programming,
Leibniz International Proc. in Informatics, Edinburgh, Scotland, 2010. (Cited on
pages 8, 25, and 26.)

[45] M. Schmidt-Schauss. Implication of clauses is undecidable. Theoretical Com-
puter Science, 59(3):287–296, 1988. (Cited on page 7.)

[46] W.J. Talbott. Two principles of bayesian epistemology. Philosophical Studies, 62

(2):135–150, 1991. (Cited on page 1.)

[47] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for
relational data. In Proceedings of the Eighteenth conference on Uncertainty in
artificial intelligence, pages 485–492. Morgan Kaufmann Publishers Inc., 2002.
(Cited on page 2.)

[48] M.P. Wellman, J.S. Breese, and R.P. Goldman. From knowledge bases to deci-
sion models. The Knowledge Engineering Review, 7(01):35–53, 1992. (Cited on
page 2.)

[49] J. Whaley and M.S. Lam. Cloning-based context-sensitive pointer alias anal-
ysis using binary decision diagrams. ACM SIGPLAN Notices, 39(6):131–144,
2004. (Cited on page 24.)

[50] Wikipedia. Datalog — wikipedia, the free encyclopedia, 2012. URL http://en.

wikipedia.org/w/index.php?title=Datalog&oldid=521440808. [Online; ac-
cessed 5-November-2012]. (Cited on page 23.)

[51] LA Zadeh. Fuzzy sets, information and cotrol, 8 (3): 338-353, 1965. (Cited on
page 21.)

http://en.wikipedia.org/w/index.php?title=Datalog&oldid=521440808
http://en.wikipedia.org/w/index.php?title=Datalog&oldid=521440808

A C O N T E N T O F C D

/
doc/..thesis text

src/..source codes

thesis.pdf...pdf file

in/...experiments inputs

muta/..mutagenesis

ptcmr/...ptc-mr

README
out/..experiments outputs

muta/..mutagenesis

ptcmr/...ptc-mr

README
prog/...thesis program

src/..source codes

discoverer.jar..jar file

README

67

	Assignment
	Zadání
	Acknowledgments
	Declaration
	Prohlášení
	Abstract
	Abstrakt
	Keywords
	Klícová slova
	Cite as
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Thesis Overview
	1.1 Introduction
	1.2 Aims and Objectives
	1.3 Thesis Organization

	2 Theoretical Foundations
	2.1 Inductive Logic Programming
	2.1.1 Terminology
	2.1.2 -subsumption
	2.1.3 Inductive Logic Programming

	2.2 Constraint Satisfaction Problem and Combinatorial Optimization
	2.2.1 Introduction
	2.2.2 Binarization of Constraints
	2.2.3 Consistency Techniques
	2.2.4 Forward Checking
	2.2.5 Variable Ordering
	2.2.6 Branch and Bound
	2.2.7 Restarted Strategy

	2.3 Artificial Neural Networks
	2.3.1 Feed-forward Architecture
	2.3.2 Learning of Artificial Neural Network

	2.4 Fuzzy Logic
	2.4.1 Łukasiewicz Logic

	3 State of the Art in related areas
	3.1 Datalog
	3.1.1 Existing Datalog Solvers
	3.1.2 Suitability for Algorithm

	3.2 -subsumption Engines
	3.2.1 Resumer2

	4 Proposed Model
	4.1 -program
	4.2 -template
	4.3 -network
	4.4 Two Examples
	4.4.1 First Example
	4.4.2 Second Example

	4.5 Learning
	4.5.1 Finding Maximal Substitution
	4.5.2 Gradient Descent

	4.6 Classification Network
	4.6.1 Multi-criteria Classification

	5 Proposed Algorithm
	5.1 Learning Phase
	5.1.1 Threshold Learning

	5.2 Classification Phase
	5.3 Effective Implementation Details
	5.3.1 Biggest Bottleneck
	5.3.2 Basic Approach for Solving -template -network.
	5.3.3 Sample Representation
	5.3.4 Variable Ordering
	5.3.5 Forward Checking
	5.3.6 Branch and Bound
	5.3.7 Caching

	6 Experiments
	6.1 -programs
	6.2 Learning Analysis
	6.3 Results

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography
	A Content of CD

